
HAL Id: hal-04850914
https://edf.hal.science/hal-04850914v1

Preprint submitted on 10 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

State-space reduction techniques exploiting specific
constraints for quantum search Application to a specific

job scheduling problem
Rodolphe Griset, Ioannis Lavdas, Jiri Guth Jarkovsky

To cite this version:
Rodolphe Griset, Ioannis Lavdas, Jiri Guth Jarkovsky. State-space reduction techniques exploiting
specific constraints for quantum search Application to a specific job scheduling problem. 2024. �hal-
04850914�

https://edf.hal.science/hal-04850914v1
https://hal.archives-ouvertes.fr

State-space reduction techniques exploiting

specific constraints for quantum search

Application to a specific job scheduling problem

Rodolphe Griset1, Ioannis Lavdas2, and Jiri Guth Jarkovsky3

1EDF R&D
2Arnold-Sommerfeld-Center for Theoretical Physics,

Ludwig-Maximilians-Universität, 80333 München, Germany∗

3IQM Germany GmbH, Georg-Brauchle-Ring 23-25, 80992
München, Germany

January 6, 2025

Abstract. Quantum search has emerged as one of the most promising fields
in quantum computing. State-of-the-art quantum search algorithms enable the
search for specific elements in a distribution by monotonically increasing the
density of these elements until reaching a high dentisity. This kind of algo-
rithms demonstrate a theoretical quadratic speed-up on the number of queries
compared to classical search algorithms in unstructured spaces. Unfortunately,
the major part of the existing literature applies quantum search to problems
which size grows exponnentialy with the input size without exploiting any spe-
cific problem structure, rendering this kind of approach not exploitable in real
industrial problems. In contrast, this work proposes exploiting specific con-
straints of scheduling problems to build an initial superposition of states with
size almost quadraticaly increasing as a function of the problem size. This state
space reduction, inspired by the quantum walk algorithm, constructs a state
superposition corresponding to all paths in a state-graph embedding spacing
constraints between jobs. Our numerical results on quantum emulators high-
lights the potential of state space reduction approach, which could lead to more
efficient quantum search processes by focusing on a smaller, more relevant, so-
lution space.

∗As of September 2023, Welinq, Paris

1

1 Introduction

Since the introduction of the renowned Grover search algorithm ([15]), which
demonstrated a quadratic speedup in searching for a solution in an unsorted
database, quantum search has emerged as one of the most promising fields
of quantum computing. This family of algorithms relies on a so-called oracle
function to identify elements of interest in a space of possible solutions. The
algorithm begins with an initial state superposition, classically a uniform one
which is easy to build. It then iteratively increases the density of marked ele-
ments by switching their phase and using this switch to rotate from the initial
state superposition to a superposition where the marked elements have high den-
sity. The initial Grover algorithm necessitates a specific number of iterations
to circumvent the soufflé problem, corresponding to stop the algorithm before
reaching the desired distribution or at the opposite overshoot it and beginning
to reduce the density of marked element in the distribution [5]. Over time,
algorithms based on Grover have been extended to search for several marked
elements ([6]) and to avoid the soufflé problem by adapting the rotation to only
increase the density of marked elements at each iteration ([31]). While Grover-
based algorithms are conceptually appealing, there is little work applying these
algorithms to real-world industrial use cases ([4],[32]). In fact, this type of algo-
rithm is primarily employed to identify the optimal or near-optimal solution to
optimization problems, which necessitate a substantial depth and a high qubit
fidelity not available in current NISQ (Noisy Intermediate Scale Quantum) com-
puters. Secondly, the majority of operational research problems solved in the
industry have a state-space of an exponential size with the input data, for which
a quadratic speed-up might be insufficient to justify moving from a classical high
performance computer (HPC) to a quantum computer (QC) in the near future.

In this article, we propose to exploit the fact that quantum search algorithms
do not impose specific conditions on the initial state superposition. By applying
these algorithms to a state superposition that already ensures some constraints
of the problem are satisfied, we can reduce the complexity of the quantum
search. Constraints make some possibilities in the initial space infeasible, thus
the number of elements with a non-zero density in this state superposition, which
we will call the reduced space state, is lower than the total number of possibilities
in the solution space. This reduction decreases the quantum search complexity.
An algorithm exploiting this principle divides the problem’s constraints into two
categories: the first are the one which have an exploitable structure which can
be handle directly through the construction of the reduced space state, while
oracle marks elements of the second category, without exploitable structure, to
be targeted by the quantum search approach.

We introduce such categorization for a specific kind of scheduling problem
involving a set of machines and a set of jobs to be scheduled on each machine.
This problem exhibits specific time window structures for jobs and spacing con-
straints between jobs on the same machines. Jobs from different machines share
resources, which limits the number of jobs that can be performed in parallel. In
the classical world, resource constraints render the problem difficult to solve in

2

general, while spacing constraints may be efficiently embedded in an extended
state graph formulation [24]. Our approach exploits this extended state graph to
build the reduced space state before applying quantum search to handle resource
constraints.

We developped a quantum walk-inspired method to build the reduced space
state. To the best of our knowledge, this approach of state-space reduction
via quantum walk for quantum search is new in the literature, although similar
ideas have been studied to improve the initial state of variational optimization
algorithms. In particular, the textbook quantum approximate optimization algo-
rithm (QAOA) [11] also starts with the superposition of all computational basis
states and, through the application of specific unitaries, tries to find the states
that best solve an optimization problem. Hadfield et. al [16] proposed an evo-
lution of QAOA, the quantum alternating operator ansatz (QAOAnsatz), which
works similarly but starts with the superposition of only the states satisfying
a fixed constraint1. Correspondingly, the QAOAnsatz algorithm is designed to
maintain states holding this constraint throughout the computation. This kind
of technic has been also used to biase the initial state superposition toward
good solutions using classical heuristics [29] which act as a kind of warm-start
for variationnal algorithms.

Our contributions are the following :

• We design a quantum search approach for a specific scheduling problems
and show that the quadratic speed-up promised by this kind of approaches
will not be sufficient compared to the exponential search space size.

• We propose a quantum walk-inspired scheme to reduce the state-space
from a quantum superposition of states defined by time windows and
spacing constraints between jobs, before applying the quantum search al-
gorithm to handle resource constraints.

• As a proof of concept, we implemented this scheme on a simplified use
case using a quantum emulator and compared the impact of problem size
on both full and reduced search approaches, showcasing the high potential
of state-space reduction.

The remaining part of this article is organized as follows : section 2 presents the
industrial motivations and the simplified problem, 3 presents the application
of a quantum search approach to this simplified use case. Section 4 introduces
the proposed state-space reduction technique inspired from discrete quantum
walk approach. Finally, section 5 gives numerical results demonstrating the
importance of the state-space reduction technique for quantum search problems.

1Common constraints include, for example, a fixed Hamming weight (number of qubits in
the |1⟩ state) or a one-hot encoding (groups of qubits of which exactly one is in the |1⟩ state.)

3

2 Problem description

2.1 Generic use case

We consider a specific variant of job scheduling satisfability problem considering
a set of I machines which have to perform K jobs each, over a set of time steps
T . Time windows are associated with each job, following a specific structure :

• A time window [Ei, Di], is associate with the first job from machine i ∈ I.
We call the Offset Oi of the machine i, the difference between the earliest
dates of the machine and the overall earliest time of all first job on all
machines, namely Oi = Ei −miniEi.

• A minimum time (T i) and a maximum time (T i) are required between two
consecutive jobs of the same machine. Those minimum and maximum
times combined with the time window of the first job of the machine
define the time window structure of further jobs, namely [Eik, Dik] =
[Ei + k.T i, Di + k.T i].

Note that, the time window of jobs corresponding to index k is of size C.k+1.
Finaly, a set of resources constraints c ∈ C limit the number of jobs allowed to
be perform in parallel on different machines. In general, an objective function is
associated with this kind of problem such as total completion time or minimum
tardiness, this kind of optimisation problems are NP-hard in the strong sense
for more than one machine [3].

2.2 Simplified case

Given emulator and current machine limitations, we consider only satisfability
problems where we aim at finding a set of feasible solutions. The motivation for
considering this problem will be detailed in section 2.3. Moreover, we introduce
some simplifying assumptions in order to reduce circuit complexity :

Assumption 1 Spacing constraints : Spacing constraints correspond to the
following expression:

0 ≤ Xi,k+1 −Xi,k < C

Figure 1 presents a graphical example of the structure for I = K = 2 and
C = 4. Each node represents one possible date and each edge corresponds to
possible combinations of dates allowed by the spacing constraints. This example
will be use to detail our algorithms in the following of this article

Assumption 2 Unitary capacity : We assume the capacity of the resource
constraint is one which means that the resource constraint do not allow to choose
the same dates for two jobs of different machines.

Assumption 3 Resource constraints by job index : We assume that re-
source constraints only impact jobs with the same index k.

4

s

0

1

2

3

0

1

2

3

4

5

6

Dates job 1 Dates job 2

Figure 1: Graphic representation of the simplified instances structure and label

Note that these assumptions are not strictly necessary and can be relaxed by
using a higher number of qubits and gates. They are practical limitations used
to simplify the presentation of our approaches and to enable simulations, but
there is no theoretical bottleneck here. Assumption 1 simplifies the structure
of time windows and spacing constraints, allowing them to be represented on
a regular graph, which facilitates the design of a quantum circuit that exploits
this structure. Assumption 2 allows resource constraints to be checked with a
simple CNOT operation between qubits, but it can be easily extended to greater
values by using additional qubits to store information about the number of jobs
in progress and compare it to a threshold. Finally, Assumption 3 facilitates
operations by only comparing qubits representing the same job index, but it
can be extended to compare the dates of all jobs.

2.3 Industrial motivation

This problem is a refined model of the outage planning problem [14], which ad-
ditionally associates a non-convex cost function with outage dates. The outage
planning problem considers a set of machines that must be stopped periodi-
cally and aims to find a set of outage dates for each unit under resource con-
straints. These constraints limit the number of outages from different machines

5

that can be performed simultaneously and impose spacing constraints between
outages of the same unit, modeling specific requirements such as fuel manage-
ment or periodic maintenance. Maintenance planning problems are crucial for
energy producers as they shape the entire electricity market for short-term is-
sues. Generally, these are complex, large-scale problems involving scheduling
constraints on outages, various technical constraints related to the machines,
and a stochastic component. The primary objective is often to meet demand at
the lowest possible cost in an uncertain future. Despite extensive research on
these problems in the literature [20], they remain difficult to be solved optimally
and are mainly addressed using meta-heuristic approaches in the industry. This
is where quantum computing might become a game changer by generating a
set of promising solutions that can be used as initial information for classical
algorithms or experts in the field. Indeed, it’s not always possible to give a
formal description of all the constraints and the cost function associated with
these kinds of problems. In this context, our idea is to exploit quantum com-
puting not to solve a problem to optimality but to generate a pool of candidate
solutions to be used as input for a more precise classical algorithm or to be ana-
lyzed by an expert. The idea of this work is to build a first step in this direction
by designing a quantum search approach to generate feasible solutions to these
kinds of problems. Precisely for that we consider in this paper the feasibility
problem, aiming to find feasible solutions to the maintenance planning problem.

3 Quantum search approach

3.1 State of the art of quantum search algorithms

The first quantum search algorithm introduced was Grover’s algorithm [15].
This algorithm relies on a circuit, called oracle, that “marks” the target state
by flipping its quantum phase. The oracle is used in conjunction with the Grover
diffusion operator, which reflects all states about the average amplitude of the
superposition. The algorithm iteratively applies the oracle, which makes the
average amplitude of the superposition lower than the phase of the non-marked
elements but greater than the (negative) phase of the marked element. The
diffusion operator then reflects all states about this average, thereby amplifying
the amplitude of the target state within the superposition. After approxima-

tively, in O
(√

N
)
iterations, the target state becomes the dominant state of the

superposition, making it highly probable to be measured. In contrast, the best
classical algorithm for unstructured search requires O(N) queries to a classical
oracle. Under standard complexity-theoretic assumptions, Grover’s algorithm
is considered optimal for unstructured search jobs [1]. Despite its advantages,
Grover’s algorithm has several limitations. These have been addressed by more
advanced search algorithms that extend Grover’s approach in various ways. One
such algorithm is amplitude amplification [6]. In amplitude amplification, the
search space is divided into two orthogonal subspaces: a “bad” subspace and a
“good” subspace corresponding to M solutions. Assuming an oracle can mark

6

states in the good subspace, the algorithm iteratively applies the oracle and
the diffusion operator, similar to Grover’s algorithm. This process amplifies the
amplitude of the good states while decreasing the amplitude of the bad states.

After approximately O
(√

N/M
)

iterations, the superposition predominantly

consists of good states, ensuring that a measurement will yield one of them.
If the number of good states is not known beforehand, amplitude ampli-

fication in its simple form cannot be used. Without knowing M , we cannot
determine the number of Grover iterations needed to amplify the good states.
Iterating too few times will leave many bad states in the superposition, while it-
erating too many times will start having the opposite effect, amplifying the bad
states and suppressing the good states. This issue is addressed by fixed-point
search algorithms [31], which are designed to converge towards the good sub-
space. Fixed-point search algorithms are based on the quantum singular value
transformation (QSVT) [22]. Theoretically, QSVT-based searches provide the
same quadratic speed-up as Grover’s algorithm. In practice, the speed-up de-
pends on the user’s uncertainty about the number of marked elements. Assum-

ing at least M marked elements, the algorithm can be run with O
(√

N/M
)

steps to find a marked element with high probability (if the assumption was
correct). Classical brute-force search is expected to find a marked element in
N/m steps, where m is the true (unknown) number of marked elements, so the
true speed-up depends on the relation of M and m.

In the extreme case when most of the states are good, amplitude amplifica-
tion can be used for deleting the bad states with super-exponential speedup [21].
Classically, this job would take O(N) steps, but with amplitude amplification
this can be performed instead in O(1) steps.

3.2 Direct application of quantum search

This section introduces the implementation of a quantum search for the simpli-
fied use case. To use this algorithm, we need to define an encoding that maps
the solutions of the problem to qubit combinations and oracles, which will mark
feasible solutions to apply amplitude amplification. Figure 2 illustrates the prin-
ciple of the algorithm, which starts by putting the system in a superposition of
all possible qubit combinations. Then, oracles are applied to mark the correct
elements before applying the amplitude amplification algorithm.

3.2.1 Encoding

Resource constraints require comparing the absolute job positions of different
machines. Therefore, we need to account for the offset between machines in
the chosen encoding. Let O be the maximum offset between machines, i.e O =
maxi(Di0) − mini(Ei0). We need log2(O) qubits to store the offset of each
machine. Then, for each job index k, we associate a binary sequence which gives
the date of the corresponding job in the interval [0,O + (C-1)k + 1]. Hence,
we need log2(O + (C − 1)k + 1) qubits to get all possibilities of a given job of

7

Qubits
machine 1

H
FeasiblePath

Oracle
Resource

Constraints
Oracle

Amplitude
amplification

Qubits
machine 2

H
FeasiblePath

Oracle

Figure 2: Full quantum search algorithm principle

index k and a sequence of I
∑

k log2(O+(C−1)k+1) represents a full instance
solution. We associate qubit combinations to date by ascending order for each
time window, i.e the combination |0⟩⊗log2(O+(C−1)k+1) is associated with the
earliest time miniEik and the highest combination is associated with the date
maxi(Dik). Figure 3 and 4 are graphical representations of the allowed dates
for the two first jobs for an machine with O = 2 and C = 4. Feasible planning
corresponds to the path in red, hence labeling feasible solutions involves the
combination of qubits associated with the two nodes of a red path.

s

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

Dates job 1

Dates job 2

Figure 3: Possible job dates
machine with an offset of two

s

|000⟩

|001⟩

|010⟩

|011⟩

|100⟩

|101⟩
Qubit combination

job 1

Qubit combination

job 2

|0000⟩

|0001⟩

|0010⟩

|0011⟩

|0100⟩

|0101⟩

|0110⟩

|0111⟩

|1000⟩

Figure 4: Qubit combination
machine with an offset of two

Once we have defined the encoding, the idea is to apply a quantum search
algorithm to generate feasible solutions to our planning problem. Textbook
quantum search algorithm start by putting the system in a superposition of all

8

possible qubit combinations by applying a Hadamard gate to each qubit. Then,
we need to define an oracle circuit which will mark qubit combinations that
respect the following constraints:

• All jobs are within there time windows.

• Two consecutive jobs of the same machine respect the spacing constraints.

• Jobs from different machines do not overlap.

3.2.2 Time windows and spacing constraint oracle

As time windows and spacing constraints are local on each machine we can
define an oracle which checks whether a given machine planning respect those
constraints and combine the result on an unique flag qubit at the end of the
circuit. Possible job dates for the first job depend of the machine’s offset, hence
this circuit takes

∑
k log2(O+Ck+1) qubits to describe job dates and log2(O)

qubits for the machine offset. Let
∣∣x0i 〉 be the binary value associate with the

offset of the machine and (
∣∣xki 〉)k≥1 the states associated with all dates of jobs

on machine i. Remark that the state associated with the Ei corresponds to∣∣x1i 〉 = |Oi⟩ and the time windows structure implies that the state associated

with Di correspond to
∣∣x1i 〉 = |Oi⟩ + C. Hence, feasible states for the first job

date of the machine correspond to 0 ≤ x1i −Oi ≤ C. Additionally, assumption 1
combined with the association between qubit combination and job dates implies
that for a given index k ≥ 1

∣∣xki 〉 ∣∣xk+1
i

〉
corresponds to a feasible solution only if

the following inequalities hold : 0 ≤ xk+1
i −xki ≤ C. Hence, to check whether the

state
∏

k≥0 x
k
i corresponds to a feasible planning with respect to time windows

and spacing constraints we need to control that :

∀k ≥ 0, 0 ≤ xk+1
i − xki ≤ C

In arithmetic, negative binary numbers are represented by their “two’s com-
plement” representation using the help of an extra (qu)bit called “sign (qu)bit”
such that for any integer number a the sum of a and its two’s complement is
equal to 0 (because of overflow). Hence, to check if equation 3.2.2 holds between
two consecutive jobs states

∣∣xki 〉 and
∣∣xk+1

1

〉
we can follow the following steps :

1. Take the two’s complement of xki .

(a) Invert all qubits by applying the X gate to all of them.

(b) Adding 1 to the number, using the +1 gate (see Box The +1 Gate)
in binary.

2. Add xki+1 and the two’s complement of xki .

3. Check whether the sign qubit of the resulting xki+1 is set to zero (e.g., by
applying a CNOT onto an extra ancilla “flag” qubit).

4. Add the two’s complement of C.

9

5. Check whether the sign qubit of the resulting xki+1 is set to one (e.g., by
applying a CNOT onto another ancilla “flag” qubit).

6. Undo steps 1, 2 and 4, to restore qubits xki and xki+1.

(a) Subtract the two’s complement of C from xki+1.

(b) Subtract xki from xki+1.

(c) Subtract 1 from xki , using the inverse of the +1 gate in binary.

(d) Invert all qubits by applying the X gate to all of them.

The circuit showing steps 1-5 is depicted in figure 6.

10

The +1 Gate

The (+1)-gate, given by Û(+1), which constitutes a central building
block of the proposed algorithm. The way this gate acts is by taking a
state of overall n qubits as input and giving as output the state incre-
mented by one in binary (with overflow):

|ỹ⟩
Û(+1)−−−→ |ỹ+1⟩ (1)

,where ỹ = (y0, y1, ..., yn−1).

Some simple examples can be seen below a:

Figure 5: Action of Û(+1) on a given quantum register

|01011⟩
Û(+1)−−−→ |01100⟩

1√
2
(|01001⟩+ |11000⟩)

Û(+1)−−−→ 1√
2
(|01010⟩+ |11001⟩)

There are multiple possible implementations of the above operation. The
one used in our case is based on the work [26] (defined as the ”X-gate”
in the article), implemented by a quantum Fourier transform (QFT),
followed by a series of single-qubit rotation gates and then followed by
another QFT. Implementing the QFTs before and after the rotations
requires O(n2) gates, for each operation. Here, n is the number of qubits
acted upon; as expected, this number which will be changing throughout
the algorithm.

arecall at this point that that yd =
n−1∑
j=0

yj2
n−(j+1)

At this point we have two flag qubits whose states encode the truth value
of the statements 0 ≤ xk+1

i − xki and xk+1
i − xki ≤ C respectively. We can

assume that they’re in the state |1⟩ if the corresponding statement is true.

11

. . .

. . .

. . .

. . .

. . .

. . .

Qubits xki

X

+1

Add

X

X

Qubits xki+1 Add C

sign qubit

Flag 1

Flag 2

Figure 6: The circuit showing the setup of the time windows constraint oracle.

Such pair of flag qubits is defined for any k. All of these qubits need to be in
the state |1⟩ in order for all of the time-windows and spacing conditions to be
fulfilled. Therefore, the oracle should apply a phase ϕ to the state of all |1⟩’s
and act as identity on all other states. This can be done with a multi-qubit gate
implementing the following unitary:

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 eiϕ

 .

An alternative (more illustrative) approach would use all of the flag qubits as
a control in a multi-controlled NOT gate which acts on yet another “ultimate”
flag qubit. The state of this flag qubit would then encode the truth value of all
the time windows and spacing constraints. The oracle would then just need to
apply a phase gate on this one qubit.

This circuit uses 2I(K − 1) flag ancilla qubits. The depth is dominated
by the addition gates, each of which includes a quantum Fourier transform
circuit and one layer of 1-qubit gates. That gives depth O(n2) where n is the
number of qubits the addition gates act on. Since these act on the sets of qubits
corresponding to one job, we have n ≈ log((C− 1)K+1). The flag qubits can’t
be set up entirely in parallel (since the qubits xki+1 used here will be needed in
next step to check against qubits xki+2 and so on ...), so the depth should be
multiplied by a further (K − 1) for the number of job pairs to check. However,

12

all machines can be checked in parallel. The final multi-controlled phase gate
can be decomposed in a standard way into O(I2) two-qubit gates.

3.2.3 Resource constraint oracle

Resource constraints bring additionnal limitations for jobs of the same index k
from different machines. To define an oracle for this kind of constraint we first
need to check separatly for each constraint and each job index if the constraint
holds. This requires several ancillary qubits. To avoid confusion, we will divide
the ancillary qubits into groups labelled A and B. The information on the qubit
number per ancillary qubit group, as well as the number of data qubits in the
register, is organized in table 1 below :

Qubit group Number of qubits

GA
I(I−1)

2 K
GB 1

Table 1: Group of ancillary qubits and their dimensions

For each resource constraint concerning machines i and i′, we first check for
each job index k if the schedules of the machine do not overlap. This is done
by applying CNOT gates controlled by the data qubits xik acting on the data
qubits of xi′k. If there is an overlap, this step will set all the data qubits of xi′k
to the state |0⟩. To verify this, we introduce an ancilla qubit (from the group
A) and apply a multi-controlled NOT gate to it controlled by the data qubits
xi′k all being in the state |0⟩. Therefore, if the jobs of the machines i and i′

overlap, this ancilla qubit is now in the state |1⟩ (and if they don’t, it’s in the
state |0⟩). After this step, we again apply a set of CNOTs controlled by the data
qubits xik acting on the data qubits of xi′k, in order to un-compute the first
wave of CNOTs (to restore xi′k back to their original state). The entire circuit
can be seen in figure 7. As a last step, we apply a multi-controlled NOT gate,
controlled by all the ancillas in group A being in the |0⟩ state and acting on the
one ancilla in group B. If this qubit is flipped, it means that no overlaps occure
between any two machines in any job index and thus no incompatibility: the
state as a whole satisfies the resource constraint. If the qubit is not flipped, the
resource constraints are violated for some pair of machines and some job index
and this state is now marked for deletion. This part of the circuit is depicted in
figure 8.

From the above we can see that the qubit requirements only grow quadrat-
ically with the number of machines and slightly more than linearly with the
number of time steps, namely O(I2K).

The comparators themselves have depth O(1). If we use many A-ancillas, we
can apply all of these in parallel; however if we reuse A-ancillas, we need to apply

these in sequence I(I−1)
2 K times. The multi-controlled X controlled by the A

qubits acting on the B-qubits itself will need circuit of depth O(log((C−1)K+1)

13

. . .

. . .

. . .

. . .

. . .

. . .

1st p.p. data qubits xik

2nd p.p data qubits xi′k

Group A ancilla

Figure 7: The circuit showing how
each ancilla qubit in group A is set
up using the data qubits xik and
xi′k.

. . .

. . .

. . .

Group A ancillas

Group B ancilla

Figure 8: The quantum circuit
showing how ancilla B is acted on
controlled by ancillas A.

[25] and we need to apply it I(I−1)
2 K times. Again, depending on whether

we recycle A-ancillas, we might need to apply them in series as opposed to
in parallel. After that we only need to apply one (inversed) multi-controlled

X, which takes O(I(I−1)
2 K) elementary gates. With this, the leading term in

the number of gates is either O(I(I−1)
2 K) if the A ancillas were paralellized or

O
[
I(I−1)

2 K log(CK)
]
if they were reused.

3.2.4 Amplitude amplification

The amplitude amplification algorithm selectively amplifies the the states with
the flag qubit set to |1⟩ and decrease the other states amplitude. The stan-
dard amplitude amplification algorithm consists of N/M steps of applying the
following two machineary operators:

SP = 1− 2 |0⟩ ⟨0|Q̃ (2)

Sϕ = 1− 2 |ϕ⟩ ⟨ϕ| (3)

Here |ϕ⟩ is the state of the system before starting the amplitude amplification
algorithm. The unitary SP is easy to construct. It’s just the Z-gate acting on
the flag ancilla as a flip. The unitary Sϕ is more complicated. In particular, its
function is to flip the phase of the state |ϕ⟩ while keeping the phase of all other
states the same. This is implemented by initially ”un-computing” the entire
circuit (so that the state |ϕ⟩ is transformed back to the source state |000(...)⟩
again. This is performed by the overall conjugate operation (application of
each of the operations applied starting from the source state, conjugated and
in inverse order) on the full quantum register (Q), followed by a multi-anti-
controlled Z-gate: in such way, the phase changes if and only only if all qubits
are in the state |0⟩. Finally, we apply the whole circuit again. This obviously
requires to calculate the entire circuit twice. The complete operation is found
below:

Sϕ|ϕ⟩ =
(
U · Z · U†

)
|ϕ⟩ (4)

14

, where U and U†, correspond to the full set of operations throughout the
whole circuit and their inverse ones, respectively and with U†|ϕ⟩ → |000..⟩.

Standard amplitude amplification is usable only if we know accurately the
proportion of qubit combinations that satisfy the constraints implemented in
our oracles. Here, as this information in unknown, we employ ”fixed-point
amplitude amplification,” which can be employed regardless of the number of
the correct combinations [13].In particular, if there are M correct states among
a superposition of N basis states, standard amplitude amplification needs to
be used with exactly

√
N/M iterations (queries to the oracles) to find them.

Fixed-point amplitude amplification needs at least
√
N/M iterations to find the

correct states. Even if M/N is unknown, one can use the fixed-point amplitude
amplification combined with exponential search[2] to find the solutions with
only small constant overhead. The seach therefore adds a factor of O

(
N
M

)
to

the circuit depth (multiplying the depth of the two oracles).

3.3 Space size analysis

As mentioned in Section 3, quantum search demonstrates a theoretical quadratic
speedup for searching in an unsorted space. However, the complexity of the
algorithm depends on the ratio between the total number of possible qubit
combinations and the number of marked elements. For our simplified use case,
in the case without offset, the full search space is of size 2I.

∑
k log2(C+(C−1)k).

The marked elements correspond to combinations of paths which do not violate
the resource constraint. Figures 9 gives the evolution of the square root of
the ratio between the total number of qubit combinations and the number of
solutions (obtained by brute force approach in this example) with the number
of jobs for two machines. Figure 10 displays the same evolution for different
number of machines I.

Figure 9: Full Search Complexity
for Two machines

Figure 10: Full Search Complexity
Number of machines Impact

We observe that the expected number of iterations increases exponentialy
both with the number of jobs (figure 9) and with the number of machines (figure
10), making the search impossible in practice for large instances. In the next sec-

15

tion we propose to an improve quantum search approach by building an initial
state superposition of smaller size, namely corresponding to the qubit combina-
tion which respect the time windows and spacing constraints, to decrease the
ratio D/N and allow potential futur applications of quantum search.

4 Quantum walk inspired state-space reduction
exploiting regular state-graph structure

As detailed in the previous section quantum search algorithms start from an
initial state (superposition of states) supplemented by an oracle which marks
“good” elements and iteratively rotate from this initial state to superpositions
where marked element has a high density. As the number of steps required
for quantum search algorithms depends on the ratio between good and bad
elements, starting from an initial state where this ratio is as high as possible
allow to perform less iteration to ensure measuring a good elements. In this
section, we introduce a way to increase the ratio between “good” and “bad”
elements in the initial state superposition when the solution space induced by
a subset of constraints corresponds to paths in an oriented rooted graph. This
method is inspired from quantum walk approaches described in the following
section.

4.1 Introduction to quantum walk

A quantum walk is a straightforward generalization of a classical random walk,
consisting of discrete steps. In each step, the “walker” randomly chooses a step
to take from a set of possible steps in a structured space, which in our case
corresponds to the rooted directed graph shown in Figure 1. At each step, the
walker is located at one of the nodes of the graph, and the set of possible steps
corresponds to the outgoing edges of that node. An edge is randomly selected,
and the walker moves along the edge to the neighboring node. Since the position
of the walker is random, it can be expressed as a probability distribution.

In a quantum random walk (QRW) [19], instead of randomly choosing a step,
the walker takes a superposition of all available steps. Therefore, the position
of the walker is not represented by a probability distribution, but by a super-
position. A quantum walk is described by a quantum state that evolves under
both a unitary operator (representing the “coin flip” step) and a conditional
shift operator (representing the walker’s movement). While classical random
walks use probabilities to describe the likelihood of transitions between states,
QRWs use quantum amplitudes to govern the spread of the walker’s quantum
state over the space. This kind of approach comprises the following component
:

• Coin Flip Operator (C): This operator acts on a separate ”coin” space
(HC) associated with each vertex of the graph. It represents the proba-
bilistic decision the walker makes at each step. Formally, it’s a unitary

16

operator acting on the coin space. If we have N vertices, the coin space is
typically represented by a N ×N unitary matrix.

• Shift Operator (S): This operator describes the movement of the walker
conditioned on the outcome of the coin flip. It determines how the walker
transitions between vertices based on the state of the coin. Formally, it’s
a conditional shift operator that depends on the coin state.

Consequently the hilbert space of the system is given by the product of the
coin and shift hilbert spaces:

H = HC ⊗HS (5)

The evolution of the walker’s state from time t to time t + 1 is given by the
following operation:

|ψ(t+ 1)⟩ = S
(
C(|ψ(t)⊗ |0⟩)

)
(6)

This process can be iterated for multiple steps to simulate the evolution of
the walker over time. In the present study, this aspect is emphasized because
quantum walk search algorithms are appealing for their at most quadratic ad-
vantage over classical algorithms in exploring graphs. This advantage ultimately
stems from the same principles that provide the speed-up in Grover’s algorithm.

4.2 Quantum walk inspired state space reduction

4.2.1 Idea of the state space reduction

As discussed in the previous sections, quantum random walks (QRWs) facili-
tate the construction of a superposition of states within a graph-like structure,
specifically a tree in our case. Our work exploit this technic to build a superpo-
sition of paths within the network that correspond to feasible schedules for a set
of machines, subject to operational constraints such as time windows and spac-
ing. This is accomplished by allowing the QRW to explore the corresponding
space of paths on the tree, with each new step performed on new qubit data.

This algorithm, called Feasible path algorithm, will act as follows :

1. Each set of data qubits represents the state associated with a given ma-
chine. The walk starts by the inititialization of the system with

∣∣x0i 〉
initialized to the offset of the machine and all other data qubits in |0⟩
state:

|si⟩ =
∣∣x0i 〉⊗ K∏

k=1

∣∣xki 〉 =
∣∣x0i 〉⊗ |00..0⟩

Now, each step of the quantum walk corresponds to a decision or transition
between possible scheduling choices of a single or multiple machines.

17

2. We iteratively apply the quantum walk-based scheme on all qubits associ-
ated with jobs k

∣∣xki 〉 and store the result in qubits
∣∣xk+1

i

〉
. This consists,

to the application of the coin and shift operators:

(a) The coin operator (C) is applied introducing superposition over
different possible paths (schedules). This represents the various
scheduling choices and its dimension corresponds to the number of
possible paths: dim[C] = npaths

(b) The shift operator (S) develops the walk through the space of paths
by extending the partial schedule to the next job index.

After kth steps of the algorithm the configuration is the following:

|sk⟩ =
∏
k′≤k

∣∣xki 〉⊗ K∏
k′=k+1

|0⟩ =
∏
k′≤k

(
S[i]C[i]

)k ∣∣x0i 〉⊗ K∏
k′=k+1

|0⟩

where
∏

k′≤k

∣∣xki 〉 correspond to the superposition of path from the source
to all node of depth k in the graph.

3. After K steps the walker as explored all path of the graph and hence the
data qubit are in superposition of all possible path :

|sk⟩ =
∏
k′≤k

(
S[i]C[i]

)K ∣∣x0i 〉
At this point, we have obtained a superposition of all possible paths, which
can be used as an an initial state for the amplitude amplification algorithm
with the resource constraint oracle described in section 3.2.3.

The method described above constitutes the initial phase of our approach
to achieving a potentially enhanced quantum search speedup by integrating two
techniques. First, we employ a quantum walk to explore the space of paths,
introducing a path superposition that serves as the initial state for the quan-
tum search. Notably, this new algorithm requires only the oracle for resource
constraints and not the feasible path oracle anymore as the initial state includes
only elements that satisfy the time windows and spacing constraints. Figure 11
show the structure of the improve algorithm where FeasiblePathsQW represents
the initial state construction.

4.2.2 Practical implementation of the quantum-walk inspired
scheme

This section describes the practical implementation of one iteration of the second
step of the algorithm, specifically how we apply a quantum walk-inspired scheme

18

Qubits
machine 1

FeasiblePathsQW

Resource
Constraints

Amplitude
amplification

Qubits
machine 2

FeasiblePathsQW

Figure 11: Structure of the reduced search algorithm

|00⟩

|00⟩

|01⟩

|10⟩

|11⟩

|000⟩

|001⟩

|010⟩

|011⟩

|100⟩

|101⟩

|110⟩

Figure 12: Instance for the feasible path demonstration

at each iteration. For simplicity, we will illustrate this process using the example
of two jobs with an offset of zero as represented in figure 12.

According to this algorithm, every step is performed onto different sets of
qubits. Note that that each node of the first job can always reach the node where
the two last qubit are identical to his state and the three node corresponding
respectively to add (+1), (+2) and (+3) to the value of this node. Hence, our
QW is based on the (+1)-gate described in box 3.2.2.

We now have every building block we need for our feasible path algorithm.
This circuit use two ancilla qubits q∗1 and q∗2 that we will call coin ancilla qubits
to underline the similarity with quantum walk. One step of this circuit is dis-

19

cribed as :

1. We copy the state of the data qubits
∣∣xki 〉 into the data qubits of the

following
∣∣xk+1

i

〉
using a serie of CNOT gates.

2. We apply the Hadamard gate to the coin ancilla qubits q∗1 and q∗2 to put
them in a superposition of the four computational basis states.

3. We apply the (+1)gate on the qubits
∣∣xk+1

i

〉
by the state of the q∗1 ancilla

qubit.

4. We apply the +1 gate twice on the qubits
∣∣xk+1

i

〉
controlled by the state

of the q∗2 ancilla qubit.

Let us now describe the application of this circuit to the construction of
the states associated with graph 12. As the first job is represented by the first
2 qubits and all possible combinations are allowed we do not need to use our
circuit on them but we only apply a Hadamard operation, putting them in equal
superposition:

|q1q2⟩ ≡ |0⟩ ⊗ |0⟩ H−→ 1

2

(
|00⟩+ |01⟩+ |10⟩+ |11⟩

)
.

This represents all the possible paths we can take from the starting (source)
node, namely the first step of the quantum walk. Let’s now apply our circuit
to build the full state superposition of all path leading to the possible job dates
for the second job :

1. We apply two CNOT gates controlled by q1 and q2 acting on q4 and q5
respectively. Now the state of the first 5 qubits is the following (q3 is yet
intact, so it remains in the state |0⟩:

|q1q2q3q4q5⟩ =
1

2
(|00000⟩+ |01001⟩+ |10010⟩+ |11011⟩)

2. We put q∗1 and q∗2 in superposition using hadamard gates.

3. We apply the (+1)-gate on the qubits q2, q3 and q4 controlled by the state
of the q∗1 ancilla qubit. We currently have the following superposition :∣∣q1q2q3q4q5〉 |q∗1⟩ = 1

2
√
2

(
|00000⟩ |0⟩+ |01001⟩ |0⟩+ |10010⟩ |0⟩+ |11011⟩ |0⟩

|00001⟩ |1⟩+ |01010⟩ |1⟩+ |01011⟩ |1⟩+ |01100⟩ |1⟩
)

4. We apply the (+1)-gate twice on the qubits q2, q3 and q4 controlled by the
state of the q∗2 ancilla qubit. We obtain :∣∣q1q2q3q4q5〉 |q∗1q∗2⟩ = 1

4

(
|00000⟩ |00⟩+ |00001⟩ |01⟩+ |00010⟩ |10⟩+ |00011⟩ |11⟩

|01001⟩ |00⟩+ |01010⟩ |01⟩+ |01011⟩ |10⟩+ |01100⟩ |11⟩
|10010⟩ |00⟩+ |10011⟩ |01⟩+ |10100⟩ |10⟩+ |10101⟩ |11⟩
|11011⟩ |00⟩+ |11100⟩ |01⟩+ |11101⟩ |10⟩+ |11110⟩ |11⟩

)
20

Here each row corresponds to one path at the first crossroads (the state of the
first 2 qubits). Each column corresponds to one path at the second crossroads.
The ancillary qubits identify this choice, but the state of the qubits q3, q4 and
q5 also depends on the state of the first two qubits.

Overall, to construct the feasible paths, we require only log2 C ancilla qubits
to use them as coin qubits.

D(qd,q) =

K∑
k=1

O(log((C − 1)K + 1)2) ∼ O(K log(CK)2) (7)

4.3 Reduced search space size analysis

As in section 3.3, we analyzed the square root ratio between the number of
marked elements and the number of possibilities in the reduced search space.
Here, the reduced search space is the product of all combinations of possible
paths for each machine, resulting in a size of CKI . The number of marked
elements remains as computed by our brute force approach. Once again, figure
13 presents the evolution of the ratio with the number of jobs for two machines,
and figure 14 the impact of the number of machines. The increase in complexity
is quasi-linear with the number of jobs demonstrating the high potential of the
approach compared to the exponential ratio of the full search algorithm. The
complexity still increase exponentialy with the number of machines but starting
from 2 for two machines it ends arround 6 for 4 machines while it was over 100
for the full search space (figure 10).

Figure 13
Figure 14: Full Search Complexity
Number of machines Impact

21

5 Numerical results

5.1 Quantum search implementation

To demonstrate our algorithm, we build the corresponding quantum circuit in
Qiskit 0.45.0 [17]. At the high level, the circuit is relatively simple:

1. From the problem description, calculate how many qubits are needed and
initialize them (starting in |0⟩)

2. Put the qubits in the initial state for the search.

3. Apply the QSVT-based fixed point search.

4. Optionally, measure the state and check that the search was successful.

The main part of the circuit is the QSVT-based fixed point search. In
essence, the fixed point search is alternating application of the two oracles with
a custom list of phase angles, generated via the pyqsp Python package [22, 7, 9],
applied to the marked states (not merely flipping the phase).

There are two sets of oracles: one for the naive quantum search described in
section 3 and the other for state-space-reduction approach presented in section
4. In both cases one oracle marks the initial state and the other oracle marks
the good states. In the state-space-reduction approach, the initial state is built
by a quantum-walk-like approach. Two qubits are used as a 4-state coin: in
each time step, the state of qubits from the previous time step is coherently
copied onto the current-time-step register and controlled by the coin qubits, it
is incremented by +0/+1/+2/+3 in binary (using quantum arithmetic based
on Fourier transform). Thus an initial state is created, which consists of the
coherent superposition of all feasible job paths of all power-plants. An oracle to
mark this state is built by un-computing the initial state back to all-|0⟩ state,
marking it and then re-computing the initial state back. The second oracle
is then needed only to check for overlaps of jobs between machines (resource
constraints), which is done by comparing the qubit state of the corresponding
pairs of registers (using CNOT gates).

For the approach without the state space reduction, the initial state is the
standard superposition of all computational basis states (obtained by applying
Hadamard gates to all the data qubits). The first oracle marks this state (by
”uncomputing” the Hadamard gates and then marking the all |0⟩ state). The
second oracle then has to check for both the feasibility constraints and the
resource constraints. The resource constraints are checked the same way as
before (comparing qubit states by CNOT gates), but on top of that the oracle
also checks the feasibility of the job paths for each machine. This is done again
by using quantum arithmetic (based on Fourier transform) to compare each
pair of consecutive jobs of each machines. If the difference between the two
consecutive jobs is outside a pre-defined range (in our case 0-3), the state is
marked as bad.

22

The fixed-point search algorithm needs to have a pre-defined number of it-
erations (which is also necessary to calculate the angles in pyqsp), but as long
as this is large enough (see sec. 3.1), we expect the final state to contain pre-
dominantly correct solutions. While there is already quantum hardware with
sufficient number of qubits to demonstrate a toy-sized version of our problem,
the limiting factor is circuit depth. Repeated application of the QSVT ora-
cles requires either error-corrected quantum HW (not yet available) or perfect
quantum simulators, which is what we use in our experiment. The test has been
performed on AMD Ryzen 5 PRO 5650U with Radeon Graphics 2.30 GHz and
16.0 Go of RAM.

5.2 Impact of the search space reduction

In this section, we analyze the numerical improvement induced by the state space
reduction circuit. As presented in [31], the fixed-point quantum search does not
exhibit a monotonic improvement in the probability of finding a marked element.
Instead, it has two phases: the probability first increases until it reaches 100%,
then follows a pseudo-sinusoidal pattern with a minimum that depends on the
settings of the fixed-point search.

Figure 15 compares the percentage of marked elements obtained depending
on the number of iterations of the fixed-point quantum search for both the full
search (FSI2K2) and the reduced search (SSRI2K2), using two machines and
two jobs without offsets. As expected, both methods show an initial increasing
phase followed by the pseudo-sinusoidal pattern. The percentage of marked el-
ements is higher than 60% at the beginning for the reduced search and below
20% for the full search. The reduced search reaches a percentage of 99.16% of
marked elements after only 5 iterations and then enters the pseudo-sinusoidal
phase, with the percentage of marked elements never falling below 77% in sub-
sequent iterations. In contrast, the full search requires 13 iterations to reach a
percentage of marked elements greater than 99% and then enters the pseudo-
sinusoidal phase. This result confirm the theoretical improvement induced by
the state space reduction.

Figures 16 and 17 respectively show the results for 2 machines with 3 jobs
and 3 machines with 2 jobs using our approaches. Due to emulator limitations,
we could not extend beyond these values. As discussed in sections 3.3 and 4.3,
the square root ratio between the number of possibilities and the number of
solutions increases linearly with the number of jobs in the reduced search, while
it increases exponentially in the full search. This is clearly illustrated in figure
16, where the full search space starts with a very low probability of finding good
elements and requires 29 iterations to reach a probability higher than 99%. In
contrast, the reduced search starts at approximately 57% and still reaches 99%
in just 5 iterations.

The impact of increasing the number of machines (figure 17) is more chal-
lenging for the reduced search approach, as the search complexity increases
exponentially. Here, a high probability of finding a solution is achieved after 9

23

Figure 15: State space reduction : 2 machines 2 jobs

iterations, which is still better than the full search approach, which takes twice
this number of iterations to reach this value.

Figure 16: State space reduction :
Impact of the number of job K

Figure 17: State space reduction :
Impact of the number of machines
I

24

5.3 Potential scaling up of the approach

Our implementation serves as a proof of concept for state-space reduction
techniques applied to a simplified scheduling problem. However, as mentioned
in Section 2, it corresponds to a simplified model for outage planning problems
of production units. To apply our approach to real-size industrial instances, we
need to scale it up, which will require a number of qubits and a circuit depth
that we currently cannot achieve on a quantum emulator. Here, we analyze
these future requirements for our approach. Note, however, that our circuit has
not been designed to optimize circuit depth, which means it might be possible
to reduce this depth by dedicated work on this aspect. We also assume that
we can reset ancilla qubits during computation, which decrease the number of
required qubits but increase the circuit depth.

An industrial instance will typically have the following range of values for
the problem parameters :

• Number of machines (units): I ∈ [2, 100]

• Number of jobs (outage): K ∈ [3, 10]

• Number of possibilities per time steps: C ∈ [10, 20]

• The offset O ∈ [5, 20]

In the following of this section we will fix C = 15 and O = 10 as these two
factors have only a slight impact on the qubit and depth requirements.

5.3.1 Number of qubits

The amount of qubit required by the full search space approach is :

• Data qubits : I
∑

k log(O + (C − 1)K + 1)

• Ancillas qubits for resource constraints : I(I−1)K
2 + 1

• Ancillas qubits for time constraints oracle : 2I(K − 1)

Overall, for high values of I and K the number of ancilla qubits is dominated
by the resource constraint one which gives the following formula for the amount
of qubits:

I
∑
k

log((C − 1)K + 1) +
I(I − 1)K

2
+ 1 (8)

The state-space reduction-based approach requires only log2(C) ancilla
qubits to perform the state-space reduction. These qubits can also be utilized
for the resource constraint oracle. Consequently, the state-space reduction does
not necessitate any additional qubits. Figure 18 illustrates the qubit require-
ments for the aforementioned setting with four jobs and a number of machines
ranging from 2 to 6.

25

It is observed that 100 qubits are sufficient to solve instances with up to 4
machines, which is the typical size for a single production geographical site. Two
sites might be accounted for with 230 qubits. Figure 19 extends the analysis to
100 machines and compares it with the curve associated with 2I2, demonstrat-
ing that this curve serves as a good approximation for the qubit requirements in
this scenario. Regarding the number of jobs, equation 8 shows that the number
of qubits increases linearly with the number of jobs. To conclude, our algo-
rithm requires a reasonable amount of qubits (between one hundred and several
thousand for real-size industrial instances).

Figure 18: Qubit requirement in-
dustrial instances 2 to 6 machines

Figure 19: Qubit requirement in-
dustrial instances 2 to 100 machines

5.3.2 Circuit depth

The circuit depth analysis is more complex due to the potential future capabili-
ties of machines to natively implement advanced gates and the inherent challenge
of optimizing quantum circuit depth, which can lead to high constants when cir-
cuits are not optimized. The depth of the fixed-point quantum search algorithm
is primarily determined by the depth of the oracles, which is multiplied by the
number of iterations of the algorithm.

As mentioned in section 3.2.3, the resource constraint oracle has a the-

oretical depth of O
[
I(I−1)

2 K log(CK)
]
. If we use the full search approach,

the depth of the time window and spacing constraint oracle is dominated by
O(log((C − 1)K + 1))2, as stated in section 3.2.2. Meanwhile, the quantum
walk-inspired scheme has a depth dominated by O(K log(CK)2) (section 4.2.2).
Overall, the circuit depth will asymptotically increase quadratically with the
number of machines I and follow a logarithmic-linear function with the number
of jobs K.

However, these asymptotic behaviors can obscure potential high-value con-
stants in the circuit depth. Hence, we used the transpile function from the Qiskit
library to compute the circuit depth associated with our previous experiments.
This transpile function expresses our circuit in terms of the basic single-qubit

26

I K Depth per iteration
2 2 4, 1 . 105

3 2 2, 1 . 107

2 3 2, 1 . 107

Table 2: Approximate depth per iteration displayed by the transpile function
of the qiskit library to the basic gates (’u1’, ’u2’, ’u3’,’cx’)

gates (’u1’, ’u2’, ’u3’) and the C-NOT two-qubit gate (’cx’). For more details,
refer to the Qiskit documentation [18]. Table 2 shows the output of the transpile
function, with values around forty thousand per iteration for 2 machines and
2 jobs, and twenty million per iteration when we add one machine or one job.
These values far exceed the numbers given in the next 3-5 years in the public
roadmaps of quantum computing companies.

These circuit depths almost certainly aren’t feasible without employing
quantum error correction (QEC). QEC allows exponentially small gate errors
(virtually no errors) at the cost of an overhead in the number of qubits, mean-
ing that if we want to use a few hundred error-corrected qubits, the quantum
computer will probably have to have a few tens of thousands of physical qubits.
Quantum computers of that size do appear in the roadmaps of some quantum
computing companies (in the 5-10 year range) [12, 27, 8]. While progress is hard
to predict, recent results show rapid progress in QEC [23, 28, 10].

6 Conclusion

This work aimed to explore the practical use of quantum search in the near
future when fault-tolerant quantum machines (FTQC) become available. It
originated from the observation that the quadratic speed-up promised by quan-
tum search might not be sufficient to make this approach practical, as the ratio
between the number of possible solutions and the number of good solutions
typically increases exponentially with the problem size in optimization prob-
lems. However, quantum search algorithms do not impose any conditions on
the initial state, which means this approach could be relevant if, by exploit-
ing problem structures, we achieve to build an initial superposition for which
the aforementioned ratio increases at most quadratically with the problem size.
The idea of state space reduction (SSR) is to exploit the specific constraints
structure of an optimization problem to build an initial state superposition of
reduced size while on the same time maintaining quantum search for constraints
and objective functions where no structure can be exploited. We developed a
proof of concept of a state-space reduction algorithm inspired by quantum walk
to generate a set of feasible solutions for a specific scheduling problem. Our
analysis of the search space size with and without the application of SSR, along
with our numerical results on quantum emulators highlight the potential of this
promising approach, which could lead to more efficient quantum search pro-

27

cesses by focusing on a smaller search space exploiting the problem’s structure
whenever possible. Our analysis of space size and numerical results demon-
strates the potential of this approach: with a similar number of qubits, the
initial superposition size grows only quadratically compared to the number of
solutions, allowing for fewer iterations, while decreasing the circuit depth and
potentially scaling the method to generate solutions for real-size industrial in-
stances in the near future. Specifically, our implementation on a simplified use
case using the Qiskit emulator indeed showcased the high potential of the state-
space reduction but also pointing out the challenge of the depth requirement for
this kind of approach. Future work could explore the practical applications of
our technique in maintenance planning problems. In such scenarios, generating
a pool of candidate solutions could serve as input for more precise classical al-
gorithms or expert analysis. Additionally, comparing the SSR-Quantum search
to classical approaches for this task would be valuable. This method could
also be generalized to other problems by extending the quantum walk-inspired
scheme to different types of graph structures. These structures often present
more complex constraints that challenge classical solutions but can be lever-
aged to reduce the search space. For instance, this approach could be applied
to grid optimization problems, where the grid inherently imposes a structure,
or to electric vehicle problems, where positions or charging intervals might be
represented within graph structures [30]. Both of these extensions could lead to
significant breakthroughs in solving industrial problems.

Aknowledgement

This work was supported by the European project NEASQC (funded from
the European Union’s Horizon 2020 research and innovation programme grant
agreement No 951821).

References

[1] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-
rani. Strengths and weaknesses of quantum computing. SIAM Journal on
Computing, 26(5):1510–1523, October 1997.

[2] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm
for unbounded searching. Information Processing Letters, 5(3):82–87, 1976.

[3] Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. Scheduling
subject to resource constraints: classification and complexity. Discrete
applied mathematics, 5(1):11–24, 1983.

[4] Panagiotis Botsinis, Dimitrios Alanis, Zunaira Babar, Hung Viet Nguyen,
Daryus Chandra, Soon Xin Ng, and Lajos Hanzo. Quantum search al-
gorithms for wireless communications. IEEE Communications Surveys &
Tutorials, 21(2):1209–1242, 2018.

28

[5] Gilles Brassard. Searching a quantum phone book. Science, 275(5300):627–
628, 1997.

[6] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quan-
tum amplitude amplification and estimation. Contemporary Mathematics,
305:53–74, 2002.

[7] Rui Chao, Dawei Ding, Andras Gilyen, Cupjin Huang, and Mario Szegedy.
Finding angles for quantum signal processing with machine precision. 2020.

[8] IQM Quantum Computers. IQM development roadmap. https://www.

meetiqm.com/technology/roadmap, 2024.

[9] Yulong Dong, Xiang Meng, K. Birgitta Whaley, and Lin Lin. Efficient
phase-factor evaluation in quantum signal processing. Physical Review A,
103(4), April 2021.

[10] Jens Niklas Eberhardt, Francisco Revson F. Pereira, and Vincent Steffan.
Pruning qLDPC codes: Towards bivariate bicycle codes with open bound-
ary conditions, 2024.

[11] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approx-
imate optimization algorithm, 2014.

[12] Jay Gambetta. IBM quantum roadmap. https://www.ibm.com/

roadmaps/quantum/, 2024.

[13] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quan-
tum singular value transformation and beyond: exponential improvements
for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pages 193–204, 2019.

[14] Rodolphe Griset. Nuclear outage planning problem: New challenges on
long term horizons. PGMO DAYS 2021, page 54, 2021.

[15] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[16] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G. Rieffel, Da-
vide Venturelli, and Rupak Biswas. From the quantum approximate opti-
mization algorithm to a quantum alternating operator ansatz. Algorithms,
12(2):34, February 2019.

[17] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J Wood,
Jake Lishman, Julien Gacon, Simon Martiel, Paul D Nation, Lev S Bishop,
Andrew W Cross, et al. Quantum computing with qiskit. arXiv preprint
arXiv:2405.08810, 2024.

29

[18] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J.
Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S.
Bishop, AndrewW. Cross, Blake R. Johnson, and Jay M. Gambetta. Quan-
tum computing with Qiskit, 2024.

[19] Julia Kempe. Quantum random walks: an introductory overview. Con-
temporary Physics, 44(4):307–327, 2003.

[20] Khairy AH Kobbacy, DN Prabhakar Murthy, Gabriella Budai, Rommert
Dekker, and Robin P Nicolai. Maintenance and production: a review of
planning models. Complex system maintenance handbook, pages 321–344,
2008.

[21] Yang Liu. Deleting a marked state in quantum database in a duality com-
puting mode. Chinese Science Bulletin, 58(24):2927–2931, June 2013.

[22] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang.
Grand unification of quantum algorithms. PRX Quantum, 2:040203, Dec
2021.

[23] A. Paetznick, M. P. da Silva, C. Ryan-Anderson, J. M. Bello-Rivas,
J. P. Campora III, A. Chernoguzov, J. M. Dreiling, C. Foltz, F. Frachon,
J. P. Gaebler, T. M. Gatterman, L. Grans-Samuelsson, D. Gresh, D. Hayes,
N. Hewitt, C. Holliman, C. V. Horst, J. Johansen, D. Lucchetti, Y. Mat-
suoka, M. Mills, S. A. Moses, B. Neyenhuis, A. Paz, J. Pino, P. Siegfried,
A. Sundaram, D. Tom, S. J. Wernli, M. Zanner, R. P. Stutz, and K. M.
Svore. Demonstration of logical qubits and repeated error correction with
better-than-physical error rates, 2024.

[24] Einollah Pira. A novel approach to solve ai planning problems in
graph transformations. Engineering Applications of Artificial Intelligence,
92:103684, 2020.

[25] Mehdi Saeedi and Massoud Pedram. Linear-depth quantum circuits for n-
qubit toffoli gates with no ancilla. Physical Review A—Atomic, Molecular,
and Optical Physics, 87(6):062318, 2013.

[26] Asif Shakeel. Efficient and scalable quantum walk algorithms via the quan-
tum fourier transform. Quantum Information Processing, 19(323), 2020.

[27] Google Quantum AI team. Google quantum computing roadmap. https:
//quantumai.google/roadmap, 2024.

[28] Google Quantum AI team. Quantum error correction below the surface
code threshold, 2024.

[29] Wim Van Dam, Karim Eldefrawy, Nicholas Genise, and Natalie Parham.
Quantum optimization heuristics with an application to knapsack prob-
lems. In 2021 IEEE International Conference on Quantum Computing and
Engineering (QCE), pages 160–170. IEEE, 2021.

30

[30] Margarita Veshchezerova. Quantum algorithms for energy management
optimization problems. Theses, Université de Lorraine, December, 2022.

[31] Theodore J Yoder, Guang Hao Low, and Isaac L Chuang. Fixed-point
quantum search with an optimal number of queries. Physical review letters,
113(21):210501, 2014.

[32] Markus Zajac and Uta Störl. Towards quantum-based search for industrial
data-driven services. In 2022 IEEE International Conference on Quantum
Software (QSW), pages 38–40. IEEE, 2022.

31

