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A B S T R A C T
Weakly dispersive Boussinesq-type models are extensively used to model long-wave propagation in
coastal areas and their interaction with coastal infrastructures. Many equations falling in this category
have been formulated during the last decades, but few detailed comparisons between them can be
found in the literature. In this work, we investigate theoretically and with computational experiments
eight variants of the most popular models used by the coastal engineering community. Both weakly
nonlinear and fully nonlinear models are considered, hoping to understand better when the additional
complexity of the latter class of models is necessary or justified. We provide an overview and discuss
the properties of these models, including the linear dispersion relation in uniform water depth, the
second-order nonlinear coupling coefficient, the shoaling gradient, and the sensitivity to wave trough
instabilities. The models are then numerically discretised using the same general strategy in a single
numerical code, using fourth-order methods for time and space discretisation. Their capacity to
simulate coastal wave propagation and their transformation when approaching the shore is assessed
on three challenging one-dimensional benchmarks. It appears that fully nonlinear models are more
consistent than their weakly nonlinear counterparts, which can occasionally perform better but show
different behaviours depending on the case.

1. Introduction
Depth-averaged wave models have become very pop-

ular during the last decades since they have a relatively
low computational cost compared to depth-resolving models
while still achieving good accuracy in shallow- and possibly
intermediate-water depths, typical of coastal wave prop-
agation. Their applicability depends mainly on two non-
dimensional parameters, quantifying nonlinear and disper-
sive effects arising during wave propagation: 𝜀 = 𝑎∕𝑑
for nonlinearity and 𝜇 = 𝑘𝑑 the relative water depth for
dispersion, with 𝑎 the local wave amplitude, 𝑑 the local still
water depth, 𝑘 = 2𝜋∕𝜆 the local wavenumber, and 𝜆 the
local wavelength. Dispersion is more significant for high
values of 𝜇, i.e. in deep waters or for short waves, while
nonlinearity is typically more important in shallow waters
or for high amplitude waves. Depth-averaged models are
asymptotic models derived from the full Euler equations,
usually within the shallow-water or long-wave framework,
assuming 𝜇2 ≪ 1. The non-dimensional equations exhibit
dispersive terms of order (𝜇2𝑛), 𝑛 ∈ ℕ. When terms of
high order (high power in 𝜇) are retained in the equations,
the models can be applied to higher relative water depths 𝜇,
where dispersion is more important.

The NSWE derived by Barré de Saint-Venant (1871) are
a powerful depth-integrated model to simulate wave propa-
gation in shallow waters, in the surf zone where waves break
and shorewards, where nonlinearity dominates. However,
due to the hydrostatic pressure assumption, these equations
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do not model frequency dispersion, no dispersive terms
appear in the equations. They are thus not appropriate for
intermediate and deep waters, where dispersive effects are
important. The typical limit between shallow and intermedi-
ate depths is 𝜇 = 𝜋∕10 or 𝑑∕𝜆 = 0.05.

Boussinesq-type (BT) models are asymptotic depth-
averaged dispersive wave models retaining the effects of
dispersion of the lowest orders. They gained popularity in the
late 1960s and extended the range of applicability of depth-
integrated models to intermediate and potentially deep wa-
ters. They are essentially a shallow-water approximation
to the fully dispersive and nonlinear water wave problem,
with additional dispersive terms compared to the NSWE,
arising when relaxing the hydrostatic pressure hypothesis.
Many different BT models have been formulated, with
dispersive and nonlinear terms of various orders. In this
work, we are mainly interested in weakly dispersive BT
models, including dispersive terms of the lowest order, i.e.
(𝜇2), with up to third-order spatial derivatives. At a given
order in dispersion, BT models are further divided between
weakly nonlinear and fully nonlinear models, depending on
the assumptions made on the nonlinearity parameter 𝜀. For
weakly dispersive (in (𝜇2)) and weakly nonlinear models,
one assumes that nonlinearity is small and of the same order
as dispersion, i.e. 𝜀 = (𝜇2), which leads to neglect all
nonlinear dispersive terms which are of order (𝜀𝜇2) =
(𝜇4) or higher. For a fully nonlinear model, nonlinearity
can be arbitrarily large, i.e. 𝜀 = (1) and all nonlinear
dispersive terms at the order of dispersion considered are
kept. Fully nonlinear models should typically be able to
describe more accurately nonlinear processes occurring
during wave propagation, e.g. shoaling. Indeed, waves can
reach values of 𝜀 higher than 1 when they are about to
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break; the weakly nonlinear hypothesis is thus not valid
and fully nonlinear models should theoretically be more
appropriate to model wave propagation and transformation
up to the shoreline. This comes at the cost of increasing
the complexity of the governing equations. The first weakly
dispersive BT model can be attributed to Boussinesq (1872),
valid for a horizontal bottom, and was extended by Mei and
Le Méhauté (1966) to uneven bottoms (Dingemans, 1997).
Peregrine (1967) also derived a weakly dispersive, weakly
nonlinear model, often considered the original Boussinesq
equations. These classical equations, however, are only
applicable up to 𝜇 ≈ 1.1 in the intermediate-water range
so that the celerity of the waves is accurately predicted.
Various techniques have been used to improve the dispersive
properties of BT models, such as using the velocity at a
reference (possibly time-varying) elevation instead of the
depth-averaged velocity (Nwogu, 1993), dividing the water
column in more than one layer (Lynett and Liu, 2004; Chazel
et al., 2009; Liu and Fang, 2016; Liu et al., 2018), or derive
new equations, equivalent to the original ones at the order
of dispersion considered, with one or several parameters
which can be tuned to improve dispersion (Madsen and
Sørensen, 1992; Madsen and Schäffer, 1998; Cienfuegos
et al., 2006; Bonneton et al., 2011; Chazel et al., 2011).
With these techniques, weakly dispersive BT models exhibit
good dispersive properties up to deep-water conditions.
High-order BT models, including terms of order (𝜇4) or
higher, have been formulated, further extending the range
of applicability of depth-averaged models. Unfortunately,
they are significantly more complex, with many more terms,
including spatial derivatives of order up to five or more,
which are difficult to handle numerically (Madsen et al.,
1997a; Gobbi and Kirby, 1999; Madsen et al., 2003). Thus,
most, if not all, operational codes are based on weakly
dispersive models. Reviews on BT models can be found in
Madsen and Schäffer (1999), Kirby (2003), Brocchini (2013)
or Kirby (2016).

Other types of nearshore wave models exist. For exam-
ple, Yang and Liu (2020) and Yang and Liu (2022) proposed
new depth-integrated wave models, derived without making
the long-wave assumption 𝜇2 ≪ 1. These models still have
the advantage of reducing the dimension of the problem
thanks to depth integration, while being applicable to study
the propagation of more dispersive waves. This is achieved
by making more or less complex assumptions on the vertical
profile of the horizontal velocity. Although good accuracy in
deeper waters comes at the cost of lengthy momentum equa-
tions, the highest order of mixed derivatives is three, as for
weakly dispersive BT equations, making the discretisation of
these equations easier than for high-order BT models. This
work however focuses only on BT models.

Although many BT models have been derived in the
literature, few comparisons have been made, and most of
them compare only a limited number of models. Some
comparisons of at least two BT models can be found in
Wei et al. (1995), Gobbi and Kirby (1999), Kennedy et al.
(2000), Kennedy et al. (2001), Kazolea and Delis (2013),

Filippini et al. (2015), Benoit et al. (2018), Kazolea and
Ricchiuto (2018), Kazolea et al. (2019) or Lteif (2024).
Kazolea and Ricchiuto (2024) recently thoroughly compared
several BT models on many different cases. Additionally, in
many comparisons, the various models show similar results,
and in particular, fully nonlinear models do not seem to
systematically have a clear upper hand over weakly nonlinear
models despite their increased computational cost. In this
work, we aim to compare some of the most popular weakly
dispersive BT models in the literature, weakly and fully
nonlinear, both theoretically and by simulating a few test
cases. The goal is to put into evidence the advantages and/or
limitations of the models considered.

The paper is organised as follows. In §2, the eight vari-
ants of BT models considered in this work are presented in
their original form, as well as a reformulation enabling their
numerical resolution. In §3, some theoretical analysis of the
properties of the models is proposed through a second-order
Stokes-type, a trough instability and a linear shoaling anal-
ysis. In §4, we briefly detail the numerical implementation
of the models considered. In §5, the models are compared
on three test cases of non-breaking long-wave propagation
in variable water depth, and finally §6 provides a discussion
of the results and a conclusion.

2. Boussinesq-type models considered
2.1. Generic formulations of BT equations

In this article, eight variants of weakly dispersive wave
models are considered and compared. To make the presenta-
tion of the models lighter and easier, we restrict ourselves to
one horizontal dimension (𝑥 axis) without loss of generality
regarding their properties. Figure 1 is a sketch of the flow
configuration with the main notations. The vertical axis
points upwards, and its origin is located at the still water level
(SWL). ℎ(𝑥, 𝑡) = 𝑑(𝑥)+𝜂(𝑥, 𝑡) is the total water depth, 𝜂(𝑥, 𝑡)
the free-surface elevation, and 𝑑(𝑥) the still water depth.
Since the equations are depth-averaged, there is a single rep-
resentative velocity 𝑢(𝑥, 𝑡) at every position 𝑥. Depending on
the model and the underlying assumptions made regarding
the vertical variations of the horizontal velocity, this velocity
can be either the depth-averaged horizontal velocity:

𝑢(𝑥, 𝑡) = 1
ℎ ∫

𝜂

−𝑑
𝑢(𝑥, 𝑧, 𝑡) d𝑧 (1)

or the horizontal velocity at a reference elevation in the water
column denoted 𝑧𝛼 , either fixed or variable in time:

𝑢𝛼(𝑥, 𝑡) = 𝑢(𝑥, 𝑧𝛼 , 𝑡). (2)
All these models can be written in dimensional non-

conservative form, called “form I” hereafter, expressing the
conservation of mass and momentum, respectively:

ℎ𝑡 + (ℎ𝑢)𝑥 = ℎ (3)
𝑢𝑡 +

(

1
2𝑢

2 + 𝑔𝜂
)

𝑥
= 𝑢 (4)
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Figure 1: Flow configuration and notations. 𝜆 and 𝑎 denote a
characteristic wavelength and wave amplitude, respectively

The notation (⋅)𝑋 denotes the partial derivative with respect
to the variable 𝑋 (𝑥 or 𝑡). 𝑔 = 9.81m∕s2 is the acceleration
of gravity. ℎ and 𝑢 are dispersive terms in (𝜇2) since
the models selected here are weakly dispersive. These terms
are functions of ℎ, 𝑢, 𝜂, 𝑑 and their partial space and time
derivatives, with at most third-order derivatives for the set
of models considered here. ℎ is different from zero only
for models that do not use the depth-averaged velocity as the
velocity variable. If ℎ = 𝑢 = 0 in Eqs. (3)–(4) and if
𝑢 = 𝑢, one recovers the non-dispersive NSWE.

The dispersive term 𝑢 includes mixed time and space
derivatives of the velocity, which means the momentum
equation (4) is implicit. To allow for the numerical resolution
of the system, all momentum equations are reformulated
here with an auxiliary variable 𝐾 = 𝑓 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥, ℎ, ℎ𝑥, ...)which includes all terms where time derivatives appear. This
solution strategy is quite common for solving BT models,
see for instance Tonelli and Petti (2009); Roeber and Cheung
(2012); Le Métayer et al. (2010); Shi et al. (2012).

With this auxiliary variable, the system (3)–(4) can be
written under the equivalent form, called “form II”:

ℎ𝑡 + (ℎ𝑢)𝑥 = ℎ (5)
𝐾𝑡 +

(

1
2𝑢

2 + 𝑔𝜂
)

𝑥
= 𝐾 (6)

𝑓
(

𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑑, 𝑑𝑥, ℎ, ℎ𝑥, ...
)

= 𝐾 (7)
where now 𝐾 does not include any time derivative. The
equations (5)–(6) can then be integrated like any Ordinary
Differential Equation (ODE), for instance with a Runge-
Kutta (RK) method, and at each step, the elliptic equation
(7) needs to be solved to recover the velocity 𝑢 from the
evolved variable 𝐾 . In the following subsections, we give
explicitly the two forms I and II of the variants of the models
considered here.
2.2. Weakly nonlinear models

Weakly nonlinear models are derived assuming that
waves are of finite but moderate amplitude, i.e. nonlinearity
remains small. This means that (𝜀) = (𝜇2) and then
nonlinear dispersive terms are of order at least(𝜇4) and can
be discarded. Three of the most popular weakly nonlinear
models in the literature are considered: the models from
Peregrine (1967), Madsen and Sørensen (1992) and Nwogu
(1993).

2.2.1. Peregrine (1967)
The equations derived by Peregrine (1967) are the

classical Boussinesq equations over variable bottoms. The
equations are formulated with the depth-averaged velocity
𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡):

ℎ𝑡 + (ℎ𝑢)𝑥 = 0 (8)
𝑢𝑡 +

(

1
2𝑢

2 + 𝑔𝜂
)

𝑥
= 1

2𝑑(𝑑𝑢)𝑥𝑥𝑡 −
1
6𝑑

2𝑢𝑥𝑥𝑡 (9)
Reformulating the equations under form II, one gets:

ℎ = 0 (10)
𝐾 = 0 (11)
𝐾 =

(

1 − 1
2𝑑𝑑𝑥𝑥

)

𝑢 − 𝑑𝑑𝑥𝑢𝑥 −
1
3𝑑

2𝑢𝑥𝑥 (12)
As the still water depth 𝑑 and its spatial derivatives are
known and constant in time, the matrix obtained after dis-
cretising the linear elliptic Eq. (12) is also constant. As
pointed out in Kazolea and Ricchiuto (2024), this property is
a direct consequence of the weak nonlinearity of the model.
2.2.2. Madsen and Sørensen (1992) (MS)

Madsen and Sørensen (1992) improved the model from
Peregrine (1967) by applying a linear operator to include
higher-order terms in the equations with a free parameter,
denoted 𝐵 hereafter, to enhance the dispersive properties.
Their model also achieves excellent linear shoaling in its
applicable range of relative water depth 𝜇 (see §3.4). The
non-conservative form of the equations, formulated with the
depth-averaged velocity 𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡), writes:

ℎ𝑡 + (ℎ𝑢)𝑥 = 0 (13)
𝑢𝑡 +

(

1
2𝑢

2 + 𝑔𝜂
)

𝑥
=
(

𝐵 + 1
3

) 𝑑2

ℎ
(ℎ𝑢)𝑥𝑥𝑡

+ 𝐵𝑔𝑑
3

ℎ
𝜂𝑥𝑥𝑥 +

𝑑
ℎ
𝑑𝑥

(

1
3 (ℎ𝑢)𝑥𝑡 + 2𝐵𝑔𝑑𝜂𝑥𝑥

)

(14)

With 𝐵 = 1∕15, a Taylor expansion of the linear dispersion
relation for 𝜇 → 0 matches that of the linear dispersion
relation from Stokes theory up to fourth-order included (see
§3.1). These equations have been used e.g. in Madsen et al.
(1997b); Tonelli and Petti (2009); Kazolea and Delis (2013)
or Kazolea and Ricchiuto (2024).

The form II of this model is:
ℎ = 0 (15)
𝐾 =

(

𝐵 + 1
3

) 𝑑2

ℎ2
(ℎ𝑢)𝑥(ℎ𝑢)𝑥𝑥 + 𝐵𝑔

𝑑3

ℎ
𝜂𝑥𝑥𝑥

+
𝑑𝑑𝑥
ℎ

(

2𝐵𝑔𝑑𝜂𝑥𝑥 −

(

(ℎ𝑢)𝑥
)2

3ℎ

) (16)

𝐾 =
[

1 −
(

𝐵 + 1
3

) 𝑑2

ℎ
ℎ𝑥𝑥 −

𝑑𝑑𝑥
3ℎ

ℎ𝑥

]

𝑢

−
[

(

𝐵 + 1
3

) 2𝑑2ℎ𝑥
ℎ

+
𝑑𝑑𝑥
3

]

𝑢𝑥

−
(

𝐵 + 1
3

)

𝑑2𝑢𝑥𝑥

(17)
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Unlike the Peregrine model, the coefficients of 𝑢 and its
spatial derivatives in Eq. (17) vary in time here through the
free surface elevation 𝜂 appearing in the total water depth
ℎ. Note that if the momentum equation (14) is written in
conservative form, then the matrix obtained from the dis-
cretisation of Eq. (17) is constant, as for Peregrine’s model
(see Tonelli and Petti (2009); Kazolea and Ricchiuto (2024)
for example).
2.2.3. Nwogu (1993)

Nwogu (1993) derived a new set of Boussinesq equa-
tions by expanding the horizontal velocity as a second-order
polynomial in 𝑧 around the arbitrary elevation 𝑧 = 𝑧𝛼 . The
expansion writes:

𝑢(𝑧) = 𝑢𝛼 + 𝑢2(𝑧) (18)
𝑢2(𝑧) =

1
2

(

𝑧2𝛼 − 𝑧
2) 𝑢𝛼,𝑥𝑥 +

(

𝑧𝛼 − 𝑧
) (

𝑑𝑢𝛼
)

𝑥𝑥 (19)
with 𝑢𝛼 = 𝑢(𝑧 = 𝑧𝛼). This ansatz is accurate at (𝜇2) in the
long-wave framework. It comes from a Taylor expansion of
the horizontal velocity along the vertical combined with the
bed boundary and irrotationality conditions. The resulting
equations, formulated with the velocity 𝑢𝛼 are (dropping
all nonlinear dispersive terms since the model is weakly
nonlinear):

ℎ𝑡 + (ℎ𝑢𝛼)𝑥 = − 𝜕
𝜕𝑥

[(

1
2𝑧

2
𝛼 −

1
6𝑑

2
)

𝑑𝑢𝛼,𝑥𝑥

+
(

𝑧𝛼 +
1
2𝑑

)

𝑑(𝑑𝑢𝛼)𝑥𝑥
]

(20)

𝑢𝛼,𝑡 +
(

1
2𝑢

2
𝛼 + 𝑔𝜂

)

𝑥
= −

[

1
2𝑧

2
𝛼𝑢𝛼,𝑥𝑥𝑡 + 𝑧𝛼

(

𝑑𝑢𝛼,𝑡
)

𝑥𝑥

]

(21)
The reference elevation at which the velocity variable

is considered is a fixed fraction of the still water depth,
written 𝑧𝛼(𝑥) = 𝜁𝑑(𝑥), thus fixed in time. The coefficient
𝜁 ∈ [−1, 0] is chosen so that the dispersion relation of
the linearised equations best matches the exact dispersion
relation from linear theory. As the MS model, this model
has thus improved dispersive properties compared to the
one from Peregrine (1967). More on that can be found in
§3.1 where the linear dispersive properties of the models are
compared. Nwogu (1993) found that when minimising the
linear phase speed error over the shallow- and intermediate-
water ranges (0 < 𝜇 < 𝜋), the optimal coefficient is
𝜁 ≈ −0.531. This BT model has been extensively used
in numerical codes, among which BOUSS-2D (Nwogu and
Demirbilek, 2001), BOSZ (Roeber and Cheung, 2012) or
TUCWave (Kazolea et al., 2012; Kazolea and Delis, 2013;
Kazolea et al., 2014).

The form II of this model writes:
ℎ = − 𝜕

𝜕𝑥

[(

1
2𝑧

2
𝛼 −

1
6𝑑

2
)

𝑑𝑢𝛼,𝑥𝑥

+
(

𝑧𝛼 +
1
2𝑑

)

𝑑(𝑑𝑢𝛼,𝑥𝑥)
]

(22)

𝐾 = 0 (23)

𝐾 =
(

1 + 𝑧𝛼𝑑𝑥𝑥
)

𝑢𝛼 + 2𝑧𝛼𝑑𝑥𝑢𝛼,𝑥

+
(

1
2𝑧

2
𝛼 + 𝑧𝛼𝑑

)

𝑢𝛼,𝑥𝑥
(24)

As for the Peregrine model, the coefficients of the velocity
terms in Eq. (24) are constant in time, and the matrix
corresponding to the linear operator linking 𝐾 and 𝑢 could
be inverted once for all.

It should be noted that the mass conservation equation
(20) is not exact. The exact conservation equation, obtained
from depth-averaging the Euler continuity equation, is:

ℎ𝑡 + (ℎ𝑢)𝑥 = 0 (25)
Using the ansatz (18), the exact mass conservation equation
(given the assumed velocity profile) would be:

ℎ𝑡 +
(

ℎ
(

𝑢𝛼 + 𝑢2
))

𝑥 = 0 (26)
However, due to the assumption of weak nonlinearity, non-
linear dispersive terms in 𝑢2 are neglected and so ℎ given
by eq. (22) is not equal to−(ℎ𝑢2)𝑥, and mass is not conserved
exactly.
2.3. Fully nonlinear models

Fully nonlinear models are derived without any partic-
ular assumption regarding nonlinearity, wave height can be
arbitrarily high. These models are then theoretically more
adapted to the simulation of wave propagation up to the coast
since wave amplitude can increase due to shoaling up to
the shoreline or the breaking point. Two families of fully
nonlinear models are considered, the Serre-Green-Naghdi
(SGN) equations (Serre, 1953; Green and Naghdi, 1976) and
the model from Wei et al. (1995), as well as some of their
improved versions.
2.3.1. Serre-Green-Naghdi (SGN) equations

The SGN equations were derived by Serre (1953) in one
horizontal dimension for flat bottoms and by Su and Gardner
(1969) and Green and Naghdi (1976) in two dimensions for
arbitrary bottom topographies. They are the fully nonlinear
extension of the weakly dispersive model from Peregrine
(1967). Contrary to the previously mentioned BT models,
this model also admits an exact energy conservation equa-
tion. The SGN equations have gained a lot of popularity in
the last 15 years (see among many references Cienfuegos
et al. (2006); Le Métayer et al. (2010); Bonneton et al.
(2011); Dutykh et al. (2013); Panda et al. (2014); Lannes
and Marche (2015); Filippini et al. (2016); Mitsotakis et al.
(2017); Zoppou et al. (2017); Duran and Marche (2017);
Pitt et al. (2021); Castro-Orgaz et al. (2022); Kazolea et al.
(2023)). The equations, formulated with 𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡),
are:

ℎ𝑡 + (ℎ𝑢)𝑥 = 0 (27)
𝑢𝑡 +

(

1
2𝑢

2 + 𝑔𝜂
)

𝑥
= 1

ℎ
𝜕
𝜕𝑥

[

1
3ℎ

3 (𝑢𝑥𝑡 + 𝑢 𝑢𝑥𝑥

−𝑢2𝑥
)

+ 1
2ℎ

2 (𝑢𝑡𝑑𝑥 + 𝑢
(

𝑢𝑑𝑥
)

𝑥
)

]

− 𝑑𝑥
[

1
2ℎ

(

𝑢𝑥𝑡

+𝑢 𝑢𝑥𝑥 − 𝑢
2
𝑥

)

+ 𝑢𝑡𝑑𝑥 + 𝑢
(

𝑢𝑑𝑥
)

𝑥

]

(28)
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The form II of this model is:
ℎ = 0 (29)
𝐾 = 𝜕

𝜕𝑥

[

𝑢2
(

1 + 1
2𝑑

2
𝑥

)

− 𝑢𝐾

+
(

1
2ℎ𝑢𝑥 + 𝑑𝑥𝑢

)

ℎ𝑢𝑥
]

(30)

𝐾 =
(

1 − 𝜂𝑥𝑑𝑥 −
1
2ℎ𝑑𝑥𝑥

)

𝑢 − ℎℎ𝑥𝑢𝑥 −
1
3ℎ

2𝑢𝑥𝑥
(31)

2.3.2. Enhanced Serre-Green-Naghdi (eSGN)
equations of Bonneton et al. (2011)

As shown in §3.1, the linear dispersive properties of the
SGN equations are the same as those of Peregrine’s model,
and the theoretical limit of applicability of the equations falls
in the intermediate-water range. Several attempts have been
made to improve the model. For example, Cienfuegos et al.
(2006) added higher-order terms to the equations following
the approach of Madsen and Sørensen (1992), and, more
recently, Clamond et al. (2017) derived an improved set
of equations over horizontal beds by using a modified La-
grangian density. A popular set of enhanced SGN equations
was derived by Bonneton et al. (2011). Their equations differ
from the original SGN equations by terms of order (𝜇4),
they are thus equivalent at order (𝜇2), and depend on a
free constant parameter, denoted 𝛾 , used to enhance the
dispersive properties. This model has a linear dispersion
relation similar to those of the improved models previously
described (see §3.1). The equations can be written (Li et al.,
2019):

ℎ𝑡 + (ℎ𝑢)𝑥 = 0 (32)
𝑢𝑡 +

(

1
2𝑢

2 + 𝑔𝜂
)

𝑥
= 1
ℎ
𝜕
𝜕𝑥

{

1
3ℎ

3 [𝛾
(

𝑢𝑥𝑡 + 𝑢 𝑢𝑥𝑥
)

+(𝛾 − 2)𝑢2𝑥 + 𝑔(𝛾 − 1)𝜂𝑥𝑥
]

+ 1
2ℎ

2 [𝛾
(

𝑢𝑡𝑑𝑥 + 𝑢 𝑢𝑥𝑑𝑥
)

+𝑢2𝑑𝑥𝑥 + 𝑔(𝛾 − 1)𝜂𝑥𝑑𝑥
]}

− 𝑑𝑥
{

1
2ℎ

[

𝛾
(

𝑢𝑥𝑡 + 𝑢 𝑢𝑥𝑥
)

+(𝛾 − 2)𝑢2𝑥 + 𝑔(𝛾 − 1)𝜂𝑥𝑥
]

+ 𝛾
(

𝑢𝑡𝑑𝑥 + 𝑢 𝑢𝑥𝑑𝑥
)

+𝑢2𝑑𝑥𝑥 + 𝑔(𝛾 − 1)𝜂𝑥𝑑𝑥
}

(33)
In order to optimise the linear phase and group speeds

for 𝜇 < 4 in the deep-water range, the suggested value of 𝛾
in Bonneton et al. (2011) is 𝛾 = 1.159. If 𝛾 = 1, one recovers
the original SGN equations (27)–(28).

The form II of the model written in conservative form
was derived by Li et al. (2019). Here, we derived the form II
of the non-conservative version of the model and obtained:

ℎ = 0 (34)

𝐾 = 𝜕
𝜕𝑥

{

𝑢2
(

1 + 1
2𝛾𝑑

2
𝑥

)

− 𝑢𝐾

+
[(

7
6𝛾 −

2
3

)

ℎ𝑢𝑥 + 𝛾𝑑𝑥𝑢
]

ℎ𝑢𝑥

− 1
2 (𝛾 − 1)ℎ𝑢2𝑑𝑥𝑥

+(𝛾 − 1)𝑔
(

1
3ℎ

2𝜂𝑥𝑥 + ℎ𝜂𝑥𝑑𝑥
)}

+ (𝛾 − 1)
[

1
3ℎ𝑢

2
𝑥
(

2𝜂𝑥 − 𝑑𝑥
)

+ 1
2𝑢

2(𝑑𝑥 − 𝜂𝑥)𝑑𝑥𝑥
]

+ (𝛾 − 1)𝑔
[

1
3ℎ𝜂𝑥𝑥

(

𝜂𝑥 − 2𝑑𝑥
)

−𝜂𝑥
(

1
2ℎ𝑑𝑥𝑥 + 𝑑

2
𝑥

)]

(35)

𝐾 =
(

1 − 𝛾𝜂𝑥𝑑𝑥 −
1
2𝛾ℎ𝑑𝑥𝑥

)

𝑢 − 𝛾ℎℎ𝑥𝑢𝑥

− 1
3𝛾ℎ

2𝑢𝑥𝑥
(36)

2.3.3. Wei et al. (1995) (WKGS)
In deriving his model, Nwogu (1993) neglected nonlin-

ear dispersive terms. These terms are included in the model
from Wei et al. (1995), hereafter abbreviated as WKGS. The
model can be derived following Nwogu’s approach, expand-
ing the horizontal velocity as a second-order polynomial in
𝑧 around its value at an arbitrary elevation 𝑧𝛼 = 𝜁𝑑, and
retaining all terms. As in Nwogu (1993), WKGS considered
𝜁 = −0.531 to optimise the linear phase speed of the model.
The resulting governing equations formulated with 𝑢 = 𝑢𝛼are:

ℎ𝑡 + (ℎ𝑢𝛼)𝑥 = − 𝜕
𝜕𝑥

{

ℎ
[(

1
2𝑧

2
𝛼 −

1
6

(

𝑑2 − 𝑑𝜂

+𝜂2
))

𝑢𝛼,𝑥𝑥 +
(

𝑧𝛼 +
1
2 (𝑑 − 𝜂)

)

(𝑑𝑢𝛼)𝑥𝑥
]}

(37)

𝑢𝛼,𝑡 +
(

1
2𝑢

2
𝛼 + 𝑔𝜂

)

𝑥
= −

[

1
2𝑧

2
𝛼𝑢𝛼,𝑥𝑥𝑡 + 𝑧𝛼

(

𝑑𝑢𝛼,𝑡
)

𝑥𝑥

]

+ 𝜕
𝜕𝑥

[

1
2𝜂

2𝑢𝛼,𝑥𝑡 + 𝜂
(

𝑑𝑢𝛼,𝑡
)

𝑥 − (𝑧𝛼 − 𝜂)𝑢𝛼(𝑑𝑢𝛼)𝑥𝑥

− 1
2

(

𝑧2𝛼 − 𝜂
2) 𝑢𝛼𝑢𝛼,𝑥𝑥 −

1
2

(

(𝑑𝑢𝛼)𝑥 + 𝜂𝑢𝛼,𝑥
)2
]

(38)
This fully nonlinear BT model is notably more complicated
than Nwogu’s, with several additional gradient operations
and mixed space-time derivatives. Reformulated under form
II, this model writes:

ℎ = − 𝜕
𝜕𝑥

{

ℎ
[(

1
2𝑧

2
𝛼 −

1
6

(

𝑑2 − 𝑑𝜂 + 𝜂2
)

)

𝑢𝛼,𝑥𝑥

+
(

𝑧𝛼 +
1
2 (𝑑 − 𝜂)

)

(𝑑𝑢𝛼)𝑥𝑥
]}

(39)
𝐾 = − 𝜕

𝜕𝑥

[

1
2

(

𝑑𝑥𝑢𝛼 + ℎ𝑢𝛼,𝑥
)2 + ℎ𝑡

(

𝑑𝑥𝑢𝛼 + ℎ𝑢𝛼,𝑥
)

+𝑢𝛼(𝑧𝛼 − 𝜂)
(

1
2 (𝑧𝛼 + 𝜂)𝑢𝛼,𝑥𝑥 + (𝑑𝑢𝛼)𝑥𝑥

)]

(40)
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𝐾 =
(

1 + (𝑧𝛼 − 𝜂)𝑑𝑥𝑥 − 𝜂𝑥𝑑𝑥
)

𝑢𝛼
+
(

2(𝑧𝛼 − 𝜂)𝑑𝑥 − 𝜂𝑥ℎ
)

𝑢𝛼,𝑥

+
(

1
2𝑧

2
𝛼 + 𝑧𝛼𝑑 − 𝜂

(

𝑑 + 1
2𝜂
))

𝑢𝛼,𝑥𝑥

(41)

The term ℎ𝑡 in Eq. (40) is computed from the continuity
equation (37), i.e. ℎ𝑡 = −(ℎ𝑢)𝑥 + ℎ, so that there is no
time derivative in the final expression of Eq. (40).

Contrary to Nwogu’s model, this model conserves mass
exactly. The model being fully nonlinear, no dispersive term
is neglected when depth-integrating the Euler continuity
equation and so eq. (39) can also be written ℎ = −(ℎ𝑢2)𝑥,
with 𝑢2 defined in eq. (19), which means the mass conserva-
tion equation (37) is:

ℎ𝑡 +
(

ℎ
(

𝑢𝛼 + 𝑢2
))

𝑥 = 0 (42)
which is the exact mass conservation equation (25).
2.3.4. Kennedy et al. (2001) (KKCD)

Kennedy et al. (2001), hereafter abbreviated as KKCD,
improved the nonlinear properties of the WKGS model by
allowing the elevation 𝑧𝛼 to vary in time. They assumed
𝑧𝛼(𝑥, 𝑡) = 𝜁𝑑(𝑥) + 𝛽𝜂(𝑥, 𝑡), with the constant parameters 𝜁
and 𝛽 chosen to improve nonlinear properties and the linear
dispersion relation. With this definition of 𝑧𝛼 the mass
conservation equation (37) of WKGS is unchanged, and the
only difference with Eq. (38) is that the first term on the
right-hand side (RHS):

−
[

1
2𝑧

2
𝛼𝑢𝛼,𝑥𝑥𝑡 + 𝑧𝛼

(

𝑑𝑢𝛼,𝑡
)

𝑥𝑥

]

(43)
now becomes:

− 𝜕
𝜕𝑡

[

1
2𝑧

2
𝛼𝑢𝛼,𝑥𝑥 + 𝑧𝛼

(

𝑑𝑢𝛼
)

𝑥𝑥

]

(44)

Choosing 𝜁 ≈ −0.553 optimises the asymptotic linear
dispersion relation, and 𝛽 ≈ 0.19 optimises the nonlinear
properties of the equations (more details in §3). This set
of parameters designates the “optimal KKCD” (oKKCD)
model.

Another set of parameters is interesting. If one chooses
𝛽 = 𝜁 + 1, then 𝑧𝛼(𝑥, 𝑡) = −𝑑(𝑥) + 𝛽ℎ(𝑥, 𝑡), i.e. the
reference elevation is a fixed fraction of the total water
column. With this choice, all terms in the equations depend
on ℎ or derivatives of 𝑑 and 𝜂, but not 𝑑 directly, thus they
do not depend on the definition of the SWL. These equations
are the “datum-invariant KKCD” (diKKCD) model and are
the basis of the well-known software FUNWAVE-TVD (Shi
et al., 2012). 𝜁 ≈ −0.553 is also chosen here, and so 𝛽 ≈
0.447. The resulting Form I of the equations is:

ℎ𝑡 + (ℎ𝑢𝛼)𝑥 = − 𝜕
𝜕𝑥

[

1
2ℎ

3
(

𝛽2 − 1
3

)

𝑢𝛼,𝑥𝑥

+ℎ2
(

𝛽 − 1
2

)

(

𝑑𝑥𝑢𝛼,𝑥 +
(

𝑑𝑥𝑢𝛼
)

𝑥
)

]
(45)

𝑢𝛼,𝑡 +
(

1
2𝑢

2
𝛼 + 𝑔𝜂

)

𝑥
= − 𝜕

𝜕𝑥

[

1
2

(

𝛽2 − 1
)

ℎ2𝑢𝛼𝑢𝛼,𝑥𝑥

+ 1
2

(

ℎ𝑢𝛼,𝑥 + 𝑑𝑥𝑢𝛼
)2 + (𝛽 − 1)ℎ𝑢𝛼

(

𝑑𝑥𝑢𝛼,𝑥 +
(

𝑑𝑥𝑢𝛼
)

𝑥
)

]

−
[

1
2 (𝛽

2 − 1)ℎ2𝑢𝛼,𝑥𝑥𝑡 − ℎ𝜂𝑥𝑢𝛼,𝑥𝑡 − 𝜂𝑥𝑑𝑥𝑢𝛼,𝑡

+(𝛽 − 1)ℎ
(

𝑑𝑥𝑢𝛼,𝑥𝑡 +
(

𝑑𝑥𝑢𝛼,𝑡
)

𝑥
)

+𝛽ℎ𝑡
(

𝛽ℎ𝑢𝛼,𝑥𝑥 + 𝑑𝑥𝑢𝛼,𝑥 +
(

𝑑𝑥𝑢𝛼
)

𝑥
)]

(46)
Kennedy et al. (2001) noticed that, among the different

possibilities, the diKKCD is more stable than the oKKCD,
both being more stable than the original WKGS for which
𝑧𝛼 has no time dependency. This property is particularly
interesting since it has been demonstrated in Madsen and
Fuhrman (2020) and Kirby (2020) that WKGS (among other
fully nonlinear models) is subject to instabilities occurring
in wave troughs for sufficiently high Nyquist wavenumbers,
i.e. fine spatial discretisations. As will be shown in §3.3,
the oKKCD model is also subject to this instability but
for a reduced range of relative water depths 𝜇 and trough
elevations. In contrast, the diKKCD model is free from such
instability.

The form II of the model is the same as WKGS, given
by Eqs. (39)–(41), the only difference being the expression
of the now time-varying reference elevation 𝑧𝛼 . The model
being fully nonlinear, it conserves mass correctly as does the
WKGS model.

3. Theoretical comparison of the properties of
the models
This section presents an analytical comparison of some

of the properties of the models. We perform a second-order
Stokes-type analysis of the models presented earlier and a
trough instability analysis following Madsen and Fuhrman
(2020). Finally, we present a linear shoaling analysis, as was
done in Madsen and Schäffer (1998) for example. The mod-
els’ performances, when used to simulate wave propagation,
will be discussed in §5.
3.1. Linear dispersive properties

Until further notice, we consider a horizontal bottom (𝑑
is constant). We make a perturbation expansion and look for
second-order solutions to the equations as plane progressive
regular waves of the form:

𝜂 = 𝑎1 cos(𝑘𝑥 − 𝜔𝑡) + 𝜀𝑎2 cos(2(𝑘𝑥 − 𝜔𝑡)) (47)
𝑢 = 𝑢1 cos(𝑘𝑥 − 𝜔𝑡) + 𝜀𝑢2 cos(2(𝑘𝑥 − 𝜔𝑡)) (48)

with 𝜀 ≪ 1 and 𝜔 the angular frequency. These expressions
are inserted in the governing equations. At first order (terms
in (1)), we get the linear dispersion relation 𝐶 = 𝜔∕𝑘.
Then, looking at terms in (𝜀), we get the amplitude of the
second-order bound harmonic, 𝑎2.

Since the initial goal of BT models is to take disper-
sion into account to be applicable in deeper waters than
the NSWE, we first look at the linear dispersion relation
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Model Coefficient 𝜎

Nwogu, WKGS,
oKKCD, diKKCD

−
(

𝛼 + 1
3

)

with

𝛼 = 1
2
𝜁2 + 𝜁

MS 𝐵

eSGN 1
3
(𝛾 − 1)

Table 1
Coefficient 𝜎 appearing in Eq. (51) for the models. 𝜁 , 𝐵 and 𝛾
are defined in §2.

obtained with the models. The exact phase speed obtained
from linear theory is, together with the first terms of its
Taylor expansion for small values of 𝜇 = 𝑘𝑑:

𝐶2
𝑒
𝑔𝑑

=
tanh𝜇
𝜇

= 1 − 1
3𝜇

2 + 2
15𝜇

4 + 
(

𝜇6
) (49)

The linear phase speed is the same for the Peregrine and
SGN models and is denoted 𝐶1. The general expression
of the linear phase speed is the same for all the improved
models considered here, namely the Nwogu, MS, eSGN,
WKGS and both variants of KKCD models, and is denoted
𝐶2. Their expressions are (again with the first terms of their
Taylor expansions):

𝐶2
1
𝑔𝑑

= 1
1 + 1

3𝜇
2
= 1 − 1

3𝜇
2 + 1

9𝜇
4 + 

(

𝜇6
) (50)

𝐶2
2
𝑔𝑑

=
1 + 𝜎𝜇2

1 +
(

𝜎 + 1
3

)

𝜇2

= 1 − 1
3𝜇

2 + 1
3

(

𝜎 + 1
3

)

𝜇4 + 
(

𝜇6
)

(51)

The expression of the coefficient 𝜎 depends on the model and
is given in table 1. Compared with Eq. (50), 𝜎 introduces
a degree of freedom in Eq. (51) to improve the dispersion
relation of the second family of models.

0 1 2 3 4 5 6
µ

0.85

0.9

0.95

1

1.05

1.1

1.15

C
/C

e

NSWE

Peregrine, SGN

MS, oKKCD, diKKCD (a) = Padé[2,2]

Nwogu, WKGS (b)

eSGN (c)

Figure 2: Ratio of the linear phase speed to the theoretical one
for the different models. The blue and red areas represent the
shallow- and deep-water ranges, respectively.

The ratio of the linear phase speed of the BT models to
the one given by linear theory Eq. (49) against 𝜇 = 𝑘𝑑 is

plotted in figure 2. The horizontal dashed lines mark the 1%
relative error limits. For reference, the linear phase speed
predicted by the NSWE is included in the plot. It is𝐶 =

√

𝑔𝑑
and is independent of the wavelength since the equations are
non-dispersive. As one can see, the classical BT model from
Peregrine and the SGN equations, i.e. 𝐶1 in Eq. (50) (light
green curve), only exhibit accurate dispersive properties in
shallow waters and at the beginning of the intermediate-
water range, roughly up to 𝜇 = 1.2.

For𝐶2 in Eq. (51), several options are possible for choos-
ing the free parameter. For each model, the linear dispersion
relation plotted in figure 2 is the one with the parameter
choices made in the references where the model was derived.
These choices were recalled in §2 where the models were
presented. We present these choices here, bearing in mind
that any particular value of 𝜎 in Eq. (51) could be reached
by all the models MS, Nwogu, WKGS, oKKCD, diKKCD
and eSGN using the relations of table 1.

A first choice is to match the Padé[2,2] approximation of
Eq. (49), namely:

𝐶2

𝑔𝑑
≈

1 + 1
15𝜇

2

1 + 2
5𝜇

2
(52)

or, equivalently, to match the coefficient of the 𝜇4 term in
the Taylor expansion of Eq. (49). This choice, called choice
(a) hereafter, was made by Madsen and Sørensen (1992) and
Kennedy et al. (2001) and leads to 𝜎 = 1∕15 ≈ 0.0667,
and consequently to 𝐵 = 1∕15 for the MS model, and
𝛼 = −2∕5 (𝜁 ≈ −0.553) for the oKKCD and diKKCD
models. The same dispersion relation could be obtained
with 𝛾 = 6∕5 = 1.2 for the eSGN model. The corresponding
curve is plotted in orange in figure 2. A clear improvement
in comparison to the Peregrine-SGN relation (Eq. (50)) can
indeed be observed in the range of intermediate water depth
𝑘𝑑 ∈ [0.5, 2.4], but the error then increases rapidly for
higher values of 𝑘𝑑.

Another widely used option is to select the value of 𝜎
which optimises the linear phase speed and/or group speed
over a range of 𝑘𝑑, typically taken as [0, 𝑘𝑑𝑚𝑎𝑥]. Various
values of 𝑘𝑑𝑚𝑎𝑥 could be considered. We show here two
examples. The first one (called choice (b)), due to Nwogu
(1993) and also considered by Wei et al. (1995), is to
minimise the phase speed error up to 𝑘𝑑𝑚𝑎𝑥 = 𝜋 and leads to
𝜁 = −0.531 (𝛼 = −0.39, and 𝜎 ≈ 0.057, a value lower than
the one of choice (a)). This corresponds to the purple curve
in figure 2. As another example, Bonneton et al. (2011) chose
𝑘𝑑𝑚𝑎𝑥 = 4 and optimised the normalised error on the phase
and group speeds and obtained 𝛾 = 1.159 for the eSGN
model (choice (c), red curve in figure 2), corresponding to
𝜎 = 0.053, again lower than the value of choice (b). The
Nwogu, WKGS and KKCD models with choice (b) and the
eSGN equations with choice (c) show less than 1% error up
to the deep-water range, with slightly larger error over the
range 𝑘𝑑 ∈ [0.7, 1.8] in comparison with the choice (a)
though. We again stress that the MS, Nwogu, WKGS and
KKCD models could all achieve the same linear dispersion
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relation as the one shown here for the eSGN with choice (c)
by choosing their free parameter to reach the same value of
𝜎.
3.2. Second-order bound wave amplitude

By looking at terms in 𝑂(𝜀) in Eqs. (47)-(48), and solv-
ing a linear system of equations, one gets the amplitude of the
second-order bound wave, 𝑎2, expressed in non-dimensional
form as 𝑎2∕𝑎1:
Weakly nonlinear models:
• Peregrine:

𝑎2
𝑎1

=
3𝑘𝑎1
4𝜇3

(

1 + 8
9𝜇

2
)

(53)

• MS:
𝑎2
𝑎1

=
3𝑘𝑎1
4𝜇3

(

1 +
(

𝐵 + 1
9

)

𝜇2
)

(54)

• Nwogu:

𝑎2
𝑎1

=
3𝑘𝑎1
4𝜇3

1 − 14
3

(

𝛼 + 1
7

)

𝜇2 + 8
3𝛼

(

𝛼 + 1
3

)

𝜇4

1 −
(

𝛼 + 1
3

)

𝜇2
(55)

Fully nonlinear models:
• SGN:

𝑎2
𝑎1

=
3𝑘𝑎1
4𝜇3

(

1 + 1
3𝜇

2
)

(56)

• eSGN:
𝑎2
𝑎1

=
3𝑘𝑎1
4𝜇3

(

1 + 5
3

(

𝛾 − 4
5

)

𝜇2 + 4
9 (𝛾 − 1)

(

𝛾 − 1
3

)

𝜇4
)

(57)

• WKGS:
𝑎2
𝑎1

=
3𝑘𝑎1
4𝜇3

[

1 − 6
(

𝛼 + 5
18

)

𝜇2 + 26
3

(

𝛼2 + 10
13𝛼 +

7
39

)

𝜇4

− 8
3

(

𝛼 + 1
3

)(

𝛼2 + 𝛼 + 1
3

)

𝜇6
]/[

1 −
(

𝛼 + 1
3

)

𝜇2
]

(58)

• oKKCD:
𝑎2
𝑎1

=
3𝑘𝑎1
4𝜇3

[

1 − 6
(

𝛼 + 5
18

)

𝜇2 + 26
3

(

𝛼2 + 10
13𝛼 −

4
39𝜉

+ 7
39

)

𝜇4 − 8
3

(

𝛼 + 1
3

)(

𝛼2 + 𝛼 − 1
3𝜉 +

1
3

)

𝜇6
]

/[

1 −
(

𝛼 + 1
3

)

𝜇2
]

(59)

Model 𝑐2 𝑐4

Peregrine 8
9

0

MS 𝐵 + 1
9

0

Nwogu −1
3
(1 + 11𝛼) 0

WKGS −1
3
(4 + 15𝛼) 11

3
𝛼(𝛼 + 1) + 10

9

oKKCD −1
3
(4 + 15𝛼) 11

3
𝛼(𝛼 + 1) + 10

9
− 8

9
𝜉

diKKCD −1
3
(4 + 15𝛼) 11

3
𝛼2 + 17

9
𝛼 + 2

9

SGN 1
3

0

eSGN 5
3

(

𝛾 − 4
5

) 4
9

(

𝛾 − 1
3

)

(𝛾 − 1)

Table 2
Coefficients 𝑐2 and 𝑐4 appearing in equation (61) for the eight
BT models. 𝜁 , 𝐵 and 𝛾 are defined in §2.

• diKKCD:
𝑎2
𝑎1

=
3𝑘𝑎1
4𝜇3

[

1 − 6
(

𝛼 + 5
18

)

𝜇2 + 26
3

(

𝛼2 + 22
39𝛼 +

1
13

)

𝜇4

− 8
3𝛼

(

𝛼 + 1
3

)2
𝜇6

]/

[

1 −
(

𝛼 + 1
3

)

𝜇2
]

(60)
In all these expressions, 𝑎2∕𝑎1 is proportional to the Ursell
number 𝑘𝑎1∕𝜇3, i.e. the ratio of wave steepness 𝑘𝑎1 to
dispersion parameter 𝜇 (to the power of 3). 𝜉 in Eq. (59) is
defined as 𝜉 = 𝛽(1 + 𝜁 ). For diKKCD 𝛽 = 1 + 𝜁 , so that
𝜉 = 1 + 2𝛼. Putting this expression in Eq. (59) gives Eq.
(60).

Making a Taylor expansion for 𝜇 → 0, one gets the
following generic approximation for 𝑎2∕𝑎1 for each model:

𝑎2
𝑎1

=
3𝑘𝑎1
4𝜇3

(

1 + 𝑐2𝜇2 + 𝑐4𝜇4 + 𝑂
(

𝜇6
)) (61)

with the 𝑐2 and 𝑐4 coefficients depending on the model,
given in table 2. The exact expression for the second-order
amplitude from Stokes’ theory is:

𝑎2𝑒
𝑎1

=
𝑘𝑎1
4

coth(𝜇)
(

3 coth2(𝜇) − 1
)

=
3𝑘𝑎1
4𝜇3

(

1 + 2
3𝜇

2 + 7
45𝜇

4 + 𝑂
(

𝜇6
)

)

(62)

For 𝑐2 to match the coefficient 2∕3 in the expansion of
𝑎2𝑒, the value of 𝛼 must be −3∕11 ≈ −0.27 for Nwogu’s
model and −2∕5 for the variants of the KKCD and the
WKGS models (corresponding to 𝜁 ≈ −0.553, choice (a)
from the previous section). For the former, this value leads
to a poor prediction of the linear phase speed; meanwhile,

Coulaud et al.: Preprint submitted to Elsevier Page 8 of 26



the agreement on the linear dispersion relation is also good
for the latter. This proves that the additional nonlinear terms
in WKGS and KKCD theoretically allow a more accurate
description of the nonlinear properties. For oKKCD and
𝛼 = −2∕5, 𝑐4 = 52∕225 − 8𝜉∕9. Choosing 𝜉 = 17∕200
(i.e. 𝛽 ≈ 0.19), 𝑐4 matches the 𝑂(𝜇4) coefficient 7∕45.

0 1 2 3 4 5 6
µ

0

0.5

1

1.5

2

a
2/
a

2e

Peregrine

SGN

MS (a)

Nwogu (b)

WKGS (b)

oKKCD (a)

diKKCD (a)

eSGN (c)

Figure 3: Ratio of the second-order correction of the free
surface to the exact one for the different models. The blue
and red areas represent the shallow- and deep-water ranges,
respectively.

Figure 3 represents the variations of the ratio 𝑎2∕𝑎2𝑒 with
𝜇 for the eight variants of the models. The horizontal dashed
lines mark the ±5% error range. The models from Peregrine
and Nwogu show similar trends, first overestimating then
underestimating wave amplitude for increasing 𝜇, and the
former being closer to the theory for 𝜇 < 1.5. As a fully non-
linear model, WKGS performs better than Nwogu’s model
for approximately 𝜇 < 1.5. However, both models show
significant errors for higher relative water depths, respec-
tively overestimating and underestimating the second-order
wave amplitude. In particular, the WKGS model predicts
excessive second-order amplitude with increasing 𝜇: the
overestimation reaches 50% at 𝜇 ≈ 𝜋, and 100% at 𝜇 ≈ 4.8.

The oKKCD model performs much better than WKGS:
it shows an acceptable accuracy up to the deep-water limit
but tends to overestimate 𝑎2 as 𝜇 increases in the deep
water range (in a notably less marked manner compared
to WKGS, though). On the contrary, the diKKCD model
underestimates the second-order amplitude by -36% at most
for 𝜇 ∈ [0, 2𝜋]. The MS and the SGN models show the
largest errors, both considerably underestimating the ampli-
tude in the intermediate-water range and beyond. The eSGN
equations are comparable to the diKKCD model.

Overall, BT models have much better linear dispersive
properties compared to their weakly nonlinear properties.
Only the oKKCD model exhibits both good dispersive and
nonlinear properties over the shallow and intermediate depth
ranges. Although this analysis is valid only for small waves,
some of the conclusions drawn here have also been reported
by other researchers when studying the propagation of non-
linear waves, namely that the Nwogu and Peregrine models
tend to overestimate wave height in some situations (here
at the beginning of the intermediate-water range), or that
the MS model and the SGN equations tend to underestimate

it (see e.g. Kennedy et al. (2000), Filippini et al. (2015) or
Kazolea and Ricchiuto (2024)).
3.3. Trough instabilities

Recently, Madsen and Fuhrman (2020) and Kirby (2020)
unveiled a nonlinear instability mechanism affecting some
BT models for sufficiently deep wave troughs and high
relative water depths. These are called "trough instabilities",
and this mechanism only affects fully nonlinear models.
Many well-known models were found to be prone to these in-
stabilities in Madsen and Fuhrman (2020) and Kirby (2020).
Among the BT models considered here, these two references
show that the WKGS model is prone to this instability, while
the SGN and weakly nonlinear ones are not.

Here, we investigate the model variants not covered in
these two references, namely the eSGN equations from Bon-
neton et al. (2011) and the extended WKGS models (oKKCD
and diKKCD) from Kennedy et al. (2001), to determine
whether trough instabilities can arise when solving these
equations. To do so, we follow the procedure detailed in
§3.4 in Madsen and Fuhrman (2020), and look for small
amplitude harmonic solutions to the equations, with a mean
water level below the SWL. This corresponds to perturba-
tions on top of the trough of a wave train. We still consider a
horizontal bottom. The ansatz for free surface elevation and
horizontal velocity is:

𝜂 = 𝛿𝑑 + 𝜀𝐴0 cos(𝑘𝑥 − 𝜔𝑡) (63)
𝑢 = 𝜀𝐵0 cos(𝑘𝑥 − 𝜔𝑡) (64)

with 𝛿 ∈ [−1, 0] and 𝜀 ≪ 1. We insert this ansatz in the
governing equations and collect the (𝜀) terms to determine
the dispersion relation, which can have singularities for
specific values of 𝛿. If 𝜔2∕𝑘2 can take negative values for
some couples (𝛿, 𝜇), then the model is affected by trough
instabilities.
For the eSGN equations, one gets:

𝜔2

𝑘2𝑔𝑑
= (𝛿 + 1)

1 + 1
3 (𝛾 − 1)(𝛿 + 1)2𝜇2

1 + 1
3𝛾(𝛿 + 1)2𝜇2

(65)

which is always strictly positive for the values of 𝛾 consid-
ered, i.e. 1 (SGN) and 1.159 (eSGN).
For the model from Kennedy et al. (2001), we get:

𝜔2

𝑘2𝑔𝑑
= (𝛿 + 1)

{

1 − 𝜇2
[

𝛼 + 1
3 +

(

𝜉 − 1
3

)

𝛿

+
(

1
4𝜉

2
/(

𝛼 + 1
2

)

− 1
6

)

𝛿2
]}/

{

1 − 𝜇2 [𝛼

+(𝜉 − 1)𝛿 +
(

1
4𝜉

2
/(

𝛼 + 1
2

)

− 1
2

)

𝛿2
]}

(66)

For WKGS (with 𝛼 = −2∕5, 𝜉 = 0) and oKKCD (𝛼 =
−2∕5, 𝜉 = 17∕200), the phase speed has a singularity at a
given relative depth 𝜇 for sufficiently low values of 𝛿. For
diKKCD, 𝜉 = 1 + 2𝛼 and the dispersion relation becomes:

𝜔2

𝑘2𝑔𝑑
= (𝛿 + 1)

1 −
(

𝛼 + 1
3

)

(𝛿 + 1)2𝜇2

1 − 𝛼(𝛿 + 1)2𝜇2
(67)
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which no longer has singularities since 1 − 𝛼(𝛿 + 1)2𝜇2 is
always strictly positive. Furthermore, diKKCD is not subject
to trough instabilities provided that 𝛼 < −1∕3, which is the
case for values giving accurate linear dispersion (choices
(a) and (b) mentioned in §3.1). For WKGS and oKKCD,
the results of the stability analysis, following the procedure
from Madsen and Fuhrman (2020), are shown in figure 4.
The solid blue and red lines represent the couples (𝛿, 𝜇) for
which the dispersion relation is singular, and the hatched
areas are the zones of instability. A computation will be
unstable if 𝛿 has a sufficiently small value, i.e. if the trough
is deep enough, and if some of the resolved wavenumbers 𝜇
fall in the unstable range. To avoid instabilities, the Nyquist
wavenumber 𝜋∕Δ𝑥 must be low enough so that all resolved
wavenumbers are stable. Lower values of 𝛿 and higher values
of 𝜇 are needed for oKKCD than WKGS to fall in the
unstable zone. Thus, the optimised model is less subject to
trough instabilities than the original WKGS model, while
the diKKCD model with classical parameter choices is free
from such instabilities. This is in line with the findings from
Kennedy et al. (2001) mentioned in §2 regarding the stability
of the WKGS and KKCD equations.

0 2.5 5 7.5 10 12.5 15 17.5 20
µ

-1

-0.8

-0.6

-0.4

-0.2

0

δ

WKGS

oKKCD

Figure 4: Zones of trough instabilities for the WKGS and
oKKCD model. The solid lines represent the singularities of
the linear phase speed, and the hatched areas between the
solid lines and the dashed lines are the theoretical zones of
trough instability.

A common feature of the eSGN and the diKKCD equa-
tions is that they do not depend on the still water depth 𝑑 but
only its spatial derivatives. In WKGS and oKKCD, however,
some dispersive terms depend on the definition of the SWL.
We examined all the models that were found to suffer from
trough instabilities in Madsen and Fuhrman (2020), namely
the models from Wei et al. (1995), Madsen and Schäffer
(1998), Agnon et al. (1999), Gobbi et al. (2000), Madsen
et al. (2002), Lynett and Liu (2004), and Liu et al. (2018).
It appears that they all also depend on the definition of the
SWL. The explanation behind the presence or absence of
trough instabilities in a given model has yet to be found, but
based on these observations, the authors believe it has to do
with the dependence of the equations on the SWL definition,
although this remains to be proven.

3.4. Linear shoaling gradient
Finally, we compare the linear shoaling properties of the

models. The bottom is no longer assumed to be horizontal. In
the linear regime and for mildly varying bottoms, the linear
shoaling gradient  is defined such that:

𝐴𝑥
𝐴

= −
𝑑𝑥
𝑑

(68)

with 𝐴(𝑥) the local wave amplitude, and 𝑑(𝑥) the local
still water depth. The shoaling gradient predicted by linear
theory was derived by Madsen and Sørensen (1992), and its
expression is:

𝑒 = 2𝜇
sinh(2𝜇) + 𝜇(1 − cosh(2𝜇))

(2𝜇 + sinh(2𝜇))2
(69)

Following Madsen and Schäffer (1998), we linearise the
model’s equations assuming 𝜂 and 𝑢 are small and look for
solutions of the form:

𝜂(𝑥, 𝑡) = 𝐴(𝑥) exp(𝑖(𝜓(𝑥) − 𝜔𝑡)) (70)
𝑢(𝑥, 𝑡) = 𝐷(𝑥)

(

1 + 𝑖𝜎(𝑥)𝑑𝑥
)

exp(𝑖(𝜓(𝑥) − 𝜔𝑡)) (71)
with 𝜓 such that 𝑑𝜓∕𝑑𝑥 = 𝑘(𝑥) the local wavenumber. The
term 𝑖𝜎𝑑𝑥 allows a phase shift between 𝑢 and 𝜂. Assuming a
mildly varying bottom, 𝑑, 𝑘, 𝐴, 𝐷, and 𝜎 are slowly varying
functions of the position 𝑥, and so all their space derivatives
of order higher than one, as well as products of derivatives,
will be neglected. With these assumptions, one obtains the
equation:

𝑠1
𝐴𝑥
𝐴

+ 𝑠2
𝑘𝑥
𝑘

+ 𝑠3
𝑑𝑥
𝑑

= 0 (72)

Differentiating the dispersion relation with respect to 𝑥
gives:

𝑘𝑥
𝑘

= −
𝑠5
𝑠4

𝑑𝑥
𝑑

(73)

and the linear shoaling gradient can be obtained as:

 =
𝑠3 − 𝑠2𝑠5∕𝑠4

𝑠1
(74)

The expressions for the linear shoaling gradient for the Pere-
grine and eSGN models can be found in Filippini (2016),
while Madsen and Sørensen (1992) derived the expression
for their model. Finally, the expression for Nwogu’s model
and its fully nonlinear extensions can be found in Lee et al.
(2003). These expressions are recalled here for complete-
ness. The linear shoaling gradient for the SGN equations and
Peregrine’s model writes:

 = 1
4

(

1 − 𝜇2
) (75)
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For Nwogu’s model, WKGS and the variants of the KKCD
equations, the coefficients in Eq. (74) are:

𝑠1 = 2 +
2𝜇2

1 − 𝛼𝜇2
[

−𝛼 − 2
3 + 𝛼

(

𝛼 + 1
3

)

𝜇2
]

,

𝑠2 = 3 +
𝜇2

(

1 − 𝛼𝜇2
)2

[

−3𝛼 − 10
3 + 3𝛼(2𝛼 + 1)𝜇2

−3𝛼2
(

𝛼 + 1
3

)

𝜇4
]

,

𝑠3 = 2 +
2𝜇2

1 − 𝛼𝜇2
[

−𝛼 − 3
2 +

(

𝛼
(

𝛼 + 5
6

)

− 1
3𝜁

− 2𝛼
3
(

1 − 𝛼𝜇2
)

)

𝜇2
]

,

𝑠4 = 2 − 4
(

𝛼 + 1
3

)

𝜇2 + 2𝛼
(

𝛼 + 1
3

)

𝜇4,

𝑠5 = 1 −
(

2
(

𝛼 + 1
3

)

+ 1
3

)

𝜇2 + 𝛼
(

𝛼 + 1
3

)

𝜇4.

(76)

For the MS model, they are:
𝑠1 = 2

(

1 + 2𝐵𝜇2 + 𝐵
(

𝐵 + 1
3

)

𝜇4
)

,

𝑠2 = 1 + 6𝐵𝜇2 + 5𝐵
(

𝐵 + 1
3

)

𝜇4,

𝑠3 = 1 +
(

4𝐵 − 2
3

)

𝜇2 + 𝐵
(

3𝐵 + 2
3

)

𝜇4,

𝑠4 = 2 + 4𝐵𝜇2 + 2𝐵
(

𝐵 + 1
3

)

𝜇4,

𝑠5 = 1 +
(

2𝐵 − 1
3

)

𝜇2 + 𝐵
(

𝐵 + 1
3

)

𝜇4.

(77)

Finally, the coefficients for the eSGN equations are:
𝑠1 = 2 + 4

3 (𝛾 − 1)𝜇2 + 2
9𝛾(𝛾 − 1)𝜇4,

𝑠2 = −1 + 2
3 (𝛾 − 1)𝜇2 + 1

3𝛾(𝛾 − 1)𝜇4,

𝑠3 =
(

2
3𝛾 − 1

)

𝜇2 + 2
9𝛾(𝛾 − 1)𝜇4,

𝑠4 = 2 + 4
3 (𝛾 − 1)𝜇2 + 2

9𝛾(𝛾 − 1)𝜇4,

𝑠5 = 1 +
(

2
3𝛾 − 1

)

𝜇2 + 1
9𝛾(𝛾 − 1)𝜇4.

(78)

The linear shoaling gradient for the different models, as
well as the one for the NSWE (constant and equal to 0.25)
and the one obtained from linear theory (Eq. (69)) are plotted
in figure 5a. The shoaling gradient for the SGN equations
and Peregrine’s model considerably underestimates the one
from linear theory. The BT models of Nwogu and WKGS
have a better shoaling gradient but still underestimate it.
For eSGN and MS, the shoaling gradient is close to linear
theory until the middle of the intermediate-water range. For
deeper waters, it is overestimated for eSGN, while for MS,
the agreement is still very satisfactory.

Perhaps, a better way to investigate the linear shoaling
properties of the models is to look at the shoaling amplitude
at the shoreline as a consequence of cumulative shoaling
effect from a deep water location. Following Chen and Liu
(1995), for a given wave angular frequency 𝜔 and offshore
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(a) Linear shoaling gradient for the different models and exact
linear wave theory.
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(b) Ratio of the linear shoaling amplitude for the models to the one
from exact linear wave theory.
Figure 5: Linear shoaling effects for the different models and
exact linear wave theory. The blue and red areas represent the
shallow- and deep-water ranges, respectively.

water depth 𝑑0, the ratio of the wave amplitude at the
shoreline (where 𝑑 = 0) to the one given by linear theory
is:

𝐴
𝐴𝑒

|

|

|

|

|𝑑=0
= exp

(

∫

𝑘∞𝑑0

0

(𝑘∞𝑑) − 𝑒(𝑘∞𝑑)
𝑘∞𝑑

d(𝑘∞𝑑)
)

(79)
with 𝑘∞ = 𝜔2∕𝑔 the deep-water wavenumber from the exact
dispersion relation of linear waves. In eq. (79), to compute
the local values of the linear shoaling gradients (𝑘𝑑) and
𝑒(𝑘𝑑), the local relative depths 𝑘𝑑 have been expressed as
a function of 𝑘∞𝑑 using the linear dispersion relation of the
model considered and linear theory. Figure 5b shows the
ratio of shoaling wave amplitude for the different models
as a function of the incident relative water depth 𝑘∞𝑑0,
with the horizontal dashed lines marking the ±5% error
range. This plot confirms that the Peregrine, SGN, Nwogu,
WKGS and variants of KKCD models all underestimate
linear shoaling. Only the eSGN and MS models keep the
error on the shoreline wave amplitude below 5% up to the
deep-water range.

However, as already seen with the second-order bound
wave amplitude and as will be shown in §5, in a non-
linear regime, different behaviours are observed. The MS
model considerably underestimates the shoaling of nonlinear
waves, as does eSGN to a lesser extent, while Nwogu’s and
Peregrine’s models usually exhibit overshoaling.
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4. Numerical implementation
The eight model variants were implemented in a single

numerical code, solving the various sets of equations in one
horizontal dimension (𝑥 coordinate) over uneven seabeds.
This allows for only investigating the differences between
the mathematical models without worrying about the effects
of the numerical methods used. A collocated grid with a
uniform grid size Δ𝑥 is used. All spatial derivatives are com-
puted with centred finite differences (FD) with five-point
stencils so that formal fourth-order accuracy is achieved for
the computation of first- and second-order derivatives, and
second-order accuracy for third-order derivatives. Time inte-
gration is performed with the standard fourth-order Runge-
Kutta explicit scheme, with a fixed time step Δ𝑡. For each
model, three specific subroutines compute respectively the
RHS of Eqs. (3) and (6), the variable 𝐾 from 𝑢, and the
velocity 𝑢 from 𝐾 . The rest of the code is identical for all
models.

Two types of boundary conditions (BC) are imple-
mented: periodic BC and wall (fully reflective) BC. For the
periodic BC, the nodes from the other end of the domain
are used to compute derivatives near each boundary. For
the wall BC, we add a mirror domain, symmetrical to
the physical domain and a periodic BC is applied to this
extended domain. The symmetry allows for perfect reflection
at the boundaries. A sketch of the discretisation and BCs
can be found in figure 6. Computations are made on 𝑁𝑥nodes, and in the periodic case (figure 6a) the length of
the physical domain is 𝐿 = 𝑁𝑥Δ𝑥, while in the reflective
case (figure 6b), the total periodic domain has a length
2𝐿 = 2(𝑁𝑥 − 1)Δ𝑥.

11 2 3 Nx − 1 Nx

L = Nx∆x

(a) Periodic boundary conditions.

11 2 3 Nx − 1 NxNx + 1 2Nx − 2

L = (Nx − 1)∆xL = (Nx − 1)∆x

Symmetrical domainPhysical domain

(b) Wall boundary conditions.
Figure 6: Grid configuration and boundary conditions.

The discretisation of the elliptic equation (7) with five-
point stencil FD leads to a linear system with a cyclic
pentadiagonal matrix since off-diagonal terms appear due to
the periodic boundary conditions. This linear system must
be solved at each time step to recover the velocity. We
recall that this matrix is time-independent for Nwogu’s and

Peregrine’s models due to the weakly nonlinear character of
these equations. The linear system of equations is solved
with the algorithm from Neossi Nguetchue and Abelman
(2008). Although this algorithm is very efficient, this step
remains the most time-consuming in the resolution process
of the governing equations.

For the first test case of the next section, wave generation
and absorption are needed. The generation is performed with
the widely used source function method from Wei et al.
(1999). It consists of adding a distributed source term on the
RHS of the mass conservation equation of the form:

𝑓 (𝑡) exp
(

−𝛽𝑔
(

𝑥 − 𝑥𝑐
)2
)

(80)
𝑥𝑐 is the desired centre of the generation zone, and 𝛽𝑔controls the length of this zone. Following Wei et al. (1999),
𝛽𝑔 = 80∕(Δ𝜆𝑝)2 with 𝜆𝑝 the local peak wavelength and Δ a
parameter that can be adjusted to improve the quality of the
generated wave train. With this expression, the total length
of the source function is approximately Δ𝜆𝑝∕2. Although
Δ ∈ [0.3, 0.5] is recommended in Wei et al. (1999), choosing
a value in the interval [4, 5] was found to give a more
satisfactory shape for the generated signal. Following Kim
et al. (2007), the amplitude of the source function is based on
the group velocity of the model 𝐶𝑔 = 𝜕𝜔∕𝜕𝑘, and is written
for monochromatic waves:

𝑓 (𝑡) =
2𝐶𝑔𝑎
𝐼

sin(𝜔𝑡) (81)

with 𝑎 the desired wave amplitude. The term 𝐼 is here to
normalise the Gaussian shape function (80) and is defined
as:

𝐼 =
√

𝜋
𝛽𝑔

exp
(

− 𝑘2

4𝛽𝑔

)

(82)

with 𝑘 computed from the linear dispersion relation of the
model.

Wave absorption is performed with relaxation zones of
length 𝐿, typically of the order of one wavelength, in which
at each location 𝑥, the free surface elevation 𝜂 and the
auxiliary variable 𝐾 are attenuated by multiplying them by
a coefficient 𝐶𝑟(𝑥), expressed as (Kazolea et al., 2023):

𝐶𝑟(𝑥) =

√

1 −
(𝑥 − 𝑥𝑠

𝐿

)2 (83)

with 𝑥𝑠 the position of the interface between the relaxation
zone and the rest of the domain.

Finally, except for some situations discussed in sub-
section 5.1 hereafter, no smoothing nor filtering was applied
during all the simulations reported in the next section.

5. Comparison of the models
The numerical code has been used to compare the eight

model variants on three wave propagation cases. The pa-
rameter choices for the wave models are those given in the

Coulaud et al.: Preprint submitted to Elsevier Page 12 of 26



references in which the models were derived, namely choice
(a) for MS, oKKCD and diKKCD, choice (b) for Nwogu and
WKGS, and choice (c) for eSGN (see §3.1 where the param-
eter values are given). Although other optimisation strategies
could be chosen, as pointed out by Choi et al. (2015), slight
variations usually do not significantly influence the results.
They simulated the experiments of shoaling and breaking
of random waves from Mase and Kirby (1992) with the
equations of Nwogu (1993) and two different optimisation
strategies, obtaining results closer to each other than to the
experimental data regarding various wave statistics. The ap-
proximate nature of the models and errors in the bathymetry
and/or the input wave and boundary conditions probably
contribute more to deviations from the observations than
a suboptimal parameterisation of the models, at least when
weakly to mildly dispersive waves are considered.
5.1. Case 1: Regular waves over a submerged bar

The first case considered is case A of the wave flume
experiments of Dingemans (1994). It consists of the propa-
gation of non-breaking regular waves of period 𝑇 = 2.02 s
and amplitude 𝑎0 = 1 cm over a submerged trapezoidal bar.
The setup is shown in figure 7. This is a popular test case
because nonlinear energy transfers combined with important
dispersive effects are observed. In the upwave flat region
of still water depth 0.4m, the waves have a wavelength
𝜆 ≈ 3.8m, thus incident waves are characterised by𝜇 ≈ 0.67
and 𝜀 = 0.025. Relaxation zones of length 𝜆 are used on both
ends of the computational domain to absorb the waves, and
we chooseΔ = 5 for the source function width for all models
except WKGS, for which we choose Δ = 4.5. With this
value, the generated waves are the most satisfactory, with
a constant height when propagating and as few higher and
lower harmonics generated as possible. We observed that
using a larger value of Δ for WKGS was impossible without
triggering trough instabilities in the generation zone, leading
to the solution blowing up. Using Δ = 4.5 in WKGS, the
generated wave train is still satisfactory.

-15 -11.2 -5 0 6 12 14 17 26.2 30
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20
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1 2 3 4 5 6 7 8 9 10 11
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Free surface

Source function

Generation zone

Wave probes

Relaxation zones

Figure 7: Case 1 - Bathymetry and numerical setup for the
simulation of case A of the experiments of Dingemans (1994),
with the location of the wave probes.

The waves propagate and shoal over the upslope of
the bar, leading to energy transfers to bound higher har-
monics since they become more and more nonlinear as

the water depth is reduced. These harmonics are then re-
leased over the plateau of the bar and mainly its downs-
lope due to the sudden changes in the bottom slope as
unveiled by Eldrup and Lykke Andersen (2020). A fine
grid size of Δ𝑥 = 1 cm ≈ 𝜆∕380 is used to resolve cor-
rectly these super-harmonics. Similarly, a small time step
Δ𝑡 = 2.5ms ≈ 𝑇 ∕808 is used. The maximum Courant num-
ber with all the BT models is approximately 𝐶𝑜 = 0.55. It is
here defined as:

𝐶𝑜 = Δ𝑡
Δ𝑥

max
𝑖

(

|𝑢𝑖| +
√

𝑔ℎ𝑖
)

(84)
with 𝑖 running over the mesh nodes indices.

Before comparing all models’ results, we discuss the
particular case of the Peregrine and SGN models. Indeed,
we observed in this test case that both these models strug-
gle to model the free higher harmonics due to their lim-
ited dispersive properties. It manifests itself through short-
wavelength oscillations generated on the downslope of the
bar when these harmonics are released (as illustrated for
the SGN model in Figure 9(a), discussed hereafter). These
oscillations probably have a low phase speed and do not
seem to propagate. Therefore, they accumulate in the course
of the simulation, and the solution eventually blows up for
long simulation times. This is not due to a lack of numerical
dissipation, as increasingΔ𝑥 orΔ𝑡 did not prevent them from
appearing. Although using another numerical method could
mitigate these effects, we note that similar observations
on the shortcomings of the SGN equations were made in
Mihami (2023) when used to simulate these experiments.
To alleviate the growth of these perturbations and obtain a
steady signal in the domain, a fourth-order Savitzky-Golay
(SG) filter, using a sliding 9-point stencil, is applied four
times per wave period (i.e. every 202Δ𝑡) to 𝜂 and𝐾 between
𝑥 ∈ [14m, 18m]. Figure 8 shows the time series of free
surface elevation at 𝑥 = 16.2m, where the strongest oscilla-
tions are generated, for the SGN equations with and without
applying the SG filter (a similar behaviour was observed with
Peregrine model, thus not duplicated here). It is apparent that
without filtering, the amplitude of the oscillations grows in
time, while with filtering, a steady signal is reached after
roughly 𝑡 = 30𝑇 .

Figure 9 shows a snapshot of the free surface over the
downslope at 𝑡 = 40𝑇 obtained with the SGN equations
without and with filtering. The SG filter has effectively
damped the short oscillations and prevented the accumula-
tion of perturbations for 𝑥 ∈ [16m, 17m]. Note that the
oscillations happen between probes 8 and 9 (and do not
propagate), so the filtering barely affects the time series at
the wave probes. As already mentioned, Peregrine’s model
showed similar behaviour, and in the following, the results
displayed with both models are obtained with the application
of the SG filter four times per 𝑇 .

We now show some free surface elevation time profiles
at some wave probes in figure 10. The results with the weakly
nonlinear models of Nwogu, Peregrine and MS are plotted
with solid lines, WKGS and the variants of KKCD with
dash-dotted lines, and the variants of the SGN equations with
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Figure 8: Case 1 - Time series of free surface elevation for the
SGN equations at 𝑥 = 16.2m without and with applying the
SG filter.
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Figure 9: Case 1 - Snapshots of free surface elevation for the
SGN equations at 𝑡 = 40𝑇 without and with applying the SG
filter.

dashed lines. Probe 6 shows that after the shoaling phase,
the wave train is qualitatively well reproduced by all the

models, except for the primary peaks, for which we see some
overshoaling with most models. The models overestimating
the most the free surface peak are the Nwogu and Peregrine
models, then WKGS and oKKCD, and finally, diKKCD
and eSGN overestimate it only slightly. With SGN and MS
models, the height of the peak is rather well predicted.
As shown by Eldrup and Lykke Andersen (2020), some of
the bound harmonics generated are released over the top
of the bar, but probably in a small proportion due to the
short length (2 m) of the area, and in these shallow water
conditions, they are not too dispersive and are modelled
correctly by all models. Bound energy is further released
over the downslope of the bar, and we can see at probe
8 essentially two behaviours: that of the models without
any enhancement of their dispersive properties (Peregrine
and SGN) and that of the dispersion-enhanced models. The
shape of the wave train predicted by the Peregrine and
SGN models is very similar, despite the full nonlinearity
of the SGN equations, and is considerably different than
in the experiments because a significant proportion of the
incident energy has shifted to higher harmonics with high
relative water depths 𝜇, too important for the models to
handle due to their limited dispersive properties. For the
other models, the wave shape is well predicted, with a slight
phase advance and, again, some overestimation of the height
of the peaks, but the differences between the models are not
so significant. More discrepancies can be observed at the
two last probes (10 and 11). The free harmonics are highly
dispersive waves that are not well resolved by any weakly
dispersive models considered here. The SGN and Peregrine
models can again not match the experimental free surface
time series, and all the dispersion-enhanced models show a
phase shift compared to the experimental data. The eSGN
model seems to be the most in phase with the experiments.
The oKKCD and diKKCD models give almost identical
results, but other than that, all models predict different wave
shapes and crests and troughs elevations. By just looking
at these free surface elevation time series, it is difficult to
determine whether some models perform better than others.

To better visualise how the different models reproduce
the nonlinear energy transfers, we examined the spatial evo-
lution of the harmonics amplitudes of free surface elevation.
In figure 11, we show these variations for the first four
harmonics for all the models, with the experimental data
represented as black dots. Before the bar, most of the energy
is carried by the primary component, and all models predict
similar amplitudes due to the only weak dispersive and non-
linear effects. The amplitude of the harmonics is modulated
due to the reflection on the bar of some of the incident
energy. During the shoaling phase, the amplitude of the four
harmonics increases due to the decreasing water depth and
increasing nonlinear energy transfers. Over the top of the bar,
for 𝑥 ∈ [12m, 14m], a considerable amount of the energy of
the first harmonic is transferred to higher harmonics. After
the downslope, all the amplitudes are relatively constant and
modulated due to the presence of free waves released over
the back of the bar, in addition to the bound components. The
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Figure 10: Case 1 - Free surface profiles at probes 6, 8, 10 and 11.

amplitude of the first harmonic is very similar for all models
except for the SGN and Peregrine models, which again give
almost identical results. Differences appear at the downslope
for harmonic 2𝑓 and at the top of the bar for 3𝑓 and 4𝑓 . Due
to the oscillations mentioned earlier, some perturbations are
observed on the first and second harmonics for the SGN and
Peregrine models towards the end of the downslope. The
amplitude of harmonic 2𝑓 is overestimated by all models
after the bar, more importantly by the Peregrine, SGN and
Nwogu models. The amplitude of harmonic 3𝑓 is slightly
overestimated by the WKGS, KKCD and Nwogu’s model,
and underestimated by the MS model. eSGN predicts well
the amplitude at all wave probes. For the SGN equations
and Peregrine’s model, we notice a significant and sudden
increase in the amplitude of the harmonic at the end of the
downslope where it is released. According to the analysis of
the linear properties of the models in §3.1, the phase speed of
the highly dispersive free harmonic should be substantially
underestimated, and it does not propagate, probably explain-
ing that its amplitude plummets immediately afterwards and
is considerably underestimated after the bar. Similarly, for
the harmonic 4𝑓 , the amplitude is underestimated by MS at
the top of the bar and overestimated by the other models,
mainly by Nwogu’s. After the bar, the amplitude varies
significantly, and eSGN is again the most accurate model.
For the SGN and Peregrine’s models, as observed for the
harmonic 3f, the amplitude of harmonic 4𝑓 peaks at the end
of the downslope but also a smaller one at its beginning, and
the amplitude is underestimated after the bar.

This case has allowed us to showcase how the different
models behave when strong dispersive effects come into
play. The models without any enhancement of their disper-
sive properties can not deal with such a situation due to
the important underestimation of the phase speed for deep
water waves. The SGN equations and Peregrine’s model
give almost identical results, although the former is fully
nonlinear and considerably more complicated than the latter.
The improved models, although incapable of reproducing
precisely the behaviour of strongly dispersive free harmonics
after the bar, still provide acceptable results regarding the
lowest order harmonics and the overall shape of the wave
train.
5.2. Case 2: Unsteady shoaling of a wave train

The second case, put forward by Kennedy et al. (2001),
consists of the unsteady shoaling of a wave train over a vari-
able seabed. The bathymetry is shown in figure 12 together
with the initial free surface elevation. The bathymetry is
specified through the still water depth as:

𝑑
𝑑1

=

⎧

⎪

⎨

⎪

⎩

𝑑min
𝑑1

+
1 − 𝑑min∕𝑑1

cosh(tan(𝜋𝑥∕(2𝐿)))
𝑥𝐿 ⩽ 𝑥 ⩽ 𝐿

𝑑min
𝑑1

𝐿 < 𝑥 ⩽ 𝑥𝑅
(85)

with 𝑑1 the still water depth in the deepest (i.e. left) part of
the domain, and 𝑑min the still water depth in the shallowest
(i.e. right) part. Here, 𝑑min∕𝑑1 = 0.2, 𝑥𝐿 = 0, 𝑥𝑅 = 74𝑑1and 𝐿 = 50𝑑1. Lateral boundary conditions are vertical
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Figure 11: Case 1 - Spatial variations of the amplitude of the first four harmonics for all the models. The black dots are the
amplitudes computed from the experimental data at the eleven probes.

(fully reflective) walls. The initialisation consists of a ta-
pered pseudo-regular wave train:

𝜂
𝑑1

=
𝑎1
𝑑1

[

cos(2𝜋𝑁𝑥∕𝐿)
cosh(tan(𝜋𝑥∕(2𝐿)))

]

(86)

with zero velocity inside the whole fluid domain. We con-
sider the case 1 in Kennedy et al. (2001), with 𝑁 = 10 and
initial wave nonlinearity 𝑎1∕𝑑1 = 0.125 in eq. (86).
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Figure 12: Case 2 - Initial free surface elevation and bathymetry
of case 1 in Kennedy et al. (2001), with the fluid domain
entirely at rest at initial time.

Close to the left wall, the wave train evolves similarly
to a standing wave while it becomes rapidly progressive in
its rightmost front and shoals over the variable seabed. The
wavelength being 𝜆 = 𝐿∕𝑁 = 5𝑑1, the relative water
depth in the deepest region is 𝜇 ≈ 1.3. Linear dispersive
properties of all models, except the SGN equations and the

BT model of Peregrine, are expected to be accurate at such
depths. The simulation was stopped at the dimensionless
time 𝑡√𝑔∕𝑑1 = 45 following Kennedy et al. (2001), as the
leading waves in the shallowest region were deemed near
breaking.

In this test, we focus on the envelopes of minimum
and maximum free surface elevation over the time range
𝑡
√

𝑔∕𝑑1 ∈ [0, 45]. Table 3 gives the maximum absolute er-
ror on the envelope of crest elevation for the eight models and
four decreasing dimensionless grid size Δ𝑥∕𝑑1, compared to
the solution obtained with Δ𝑥∕𝑑1 = 0.005 (specific to each
model considered).

Based on the results of this convergence study, a grid size
ofΔ𝑥∕𝑑1 = 0.02 is used for all models but WKGS, giving at
most 4×10−4 difference on the dimensionless crest envelope
compared with the solution obtained with Δ𝑥∕𝑑1 = 0.005.
For the WKGS model, mesh convergence is not reached as
described below, and Δ𝑥∕𝑑1 = 0.005 is used to display the
results. The chosen time step is Δ𝑡√𝑔∕𝑑1 = 3.1 × 10−3 for
WKGS, and 4×10−3 for the other models, giving a maximum
Courant number of approximately 0.67.

No experimental data is available for this test case,
and the reference solution is obtained here with the fully
dispersive, fully nonlinear potential flow (FNPF) model
whispers3D, which solves the Zakharov formulation of the
potential flow equations with a spectral approach in the
vertical (Zhang et al., 2019; Zhang and Benoit, 2021; Zhang
et al., 2022). The solution was obtained with this solver after
a convergence study and was almost identical to the one
obtained in Kennedy et al. (2001) with another FNPF solver.
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Model Δ𝑥∕𝑑1 = 0.1 Δ𝑥∕𝑑1 = 0.04 Δ𝑥∕𝑑1 = 0.02 Δ𝑥∕𝑑1 = 0.01

Peregrine 6 × 10−3 3 × 10−4 2 × 10−5 10−6

SGN 2 × 10−3 8 × 10−5 5 × 10−6 3 × 10−7

MS 2 × 10−3 2 × 10−4 4 × 10−5 7 × 10−6

Nwogu 9 × 10−3 4 × 10−4 3 × 10−5 2 × 10−6

WKGS 4 × 10−2 2 × 10−2 10−2 9 × 10−3

oKKCD 2 × 10−2 3 × 10−3 4 × 10−4 4 × 10−6

diKKCD 7 × 10−3 4 × 10−4 3 × 10−5 2 × 10−6

eSGN 6 × 10−3 3 × 10−4 2 × 10−5 10−6

Table 3
Case 2 - Maximum error on the envelope of crest elevations 𝜂max∕𝑑1 compared to the solution with Δ𝑥∕𝑑1 = 0.005 for different
grid sizes and each model.
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Figure 13: Case 2 - Crests and troughs envelopes in the left part
of the domain, computed in the time range 𝑡

√

𝑔∕𝑑1 ∈ [0, 45].

Figures 13 and 14 show the envelopes of wave crests
and troughs during the whole simulation for all eight models
plus the whispers3D reference solution. Figure 13 shows the
results for 𝑥∕𝑑1 ∈ [0, 30] (left part of the domain), and
figure 14 for 𝑥∕𝑑1 ∈ [30, 60] (right part). The envelopes
are split over three sub-figures, each with the reference
solution, for better visualisation: the top panel with the
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Figure 14: Case 2 - Crests and troughs envelopes in the right
part of the domain, computed in the time range 𝑡

√

𝑔∕𝑑1 ∈
[0, 45].

weakly nonlinear models, the middle one with the two
variants of the SGN equations, and the last one with the
variants of WKGS and KKCD models. As shown in figure
13, all wave envelopes are pretty close to each other, except
the MS model, which underestimates crest elevations. This
shows that the dispersive effects in the deeper part of the
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domain and the beginning of the shoaling phase are generally
well captured by all models. More significant discrepancies
appear between the models towards the end of the slope and
the shallowest region in the right part of the domain (figure
14). The envelopes exhibit near vertical fronts because they
are the last waves reaching the shallowest area that shoal the
most and have the highest crest elevation and steep fronts.
The maximum crest elevation is then given by the elevation
of the last wave crest reaching each location. In figure 14,
the wave trough elevations are quite well predicted with
minor differences among the various models (in contrast
to wave crest envelopes). With Nwogu’s model, the max-
imum crest elevation is overestimated everywhere except
for 𝑥∕𝑑1 ∈ [45, 48] approximately. WKGS model also
overestimates crest elevations: the higher the crest elevation
in the reference solution, the more it is overestimated, as can
be seen for 𝑥∕𝑑1 ∈ [42, 48] approximately. With Peregrine’s
model, as with Nwogu’s, crest elevations are overestimated
or underestimated depending on the location. The oKKCD
equations give the best results, in line with the findings
of Kennedy et al. (2001). All other models consistently
underestimate the maximum crest elevation, and from the
closest to the furthest from the reference solution, we have
diKKCD, eSGN, SGN and MS.

Although they gave the best results for the previous
test case, the eSGN equations underestimate the wave crest
envelope so significantly that they provide worse results than
the weakly nonlinear models of Nwogu and Peregrine, even
though the latter has limited dispersive properties. It should
be noted that at the end of the calculation, the maximum
wave height corresponding to the crest located at 𝑥∕𝑑1 ≈ 44
and computed with whispers3D is 𝐻∕𝑑1 ≈ 0.14, giving
a local nonlinearity ratio 𝜀 = 𝐻∕(2𝑑) ≈ 0.33 which is
very high. The wave conditions are then far beyond the
assumption of moderate amplitude theoretically required for
weakly nonlinear models, and the seemingly better results
obtained with Nwogu’s and Peregrine’s models compared to
the SGN and eSGN models are surprising. As mentioned,
the highest waves approach the breaking onset at the end
of the simulation (with the reference FNPF model), and
since the wave height is not very well estimated with most
models, then neither the breaking location nor the breaking
strength, related to the wave height at the breaking onset,
will be predicted accurately with these approximate models.
As noted by Kennedy et al. (2001) for the variants of WKGS
and KKCD models, all BT models predict locations for crest
envelope fronts further upstream than whispers3D, meaning
they all underestimate the phase speed of the most nonlinear
waves, which is different from what was observed in the
linear framework in §3.1.

It was noted in Figure 14 that the WKGS model produces
excessive shoaling of the highest waves. As pointed out by
Kennedy et al. (2001), when decreasing the grid size to try
to reach mesh convergence with this model, the maximum
wave crest elevation for 𝑥∕𝑑1 ∈ [45, 48] approximately
consistently increases and convergence is never reached.
Figure 15 shows the crest envelope over the range 𝑥∕𝑑1 ∈
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Figure 15: Case 2 - Crest envelopes with WKGS model for 6
grid sizes shown over the reduced range 𝑥∕𝑑1 ∈ [40, 50].

[40, 50] for 6 decreasing grid sizes (including values lower
than the ones used in Table 3). Mesh convergence is ap-
proximately reached for Δ𝑥∕𝑑1 = 0.01 outside this range.
However, the elevation of the last wave crest reaching this
range continuously grows for decreasing grid size.

Some insight on what causes this can be gained from
figure 16 showing the crest elevation of the troublesome
wave at three instants towards the end of the simulation and
for three grid sizes. For each grid size, the Courant number
is 𝐶 ≈ 0.35. At 𝑡√𝑔∕𝑑1 = 41, the wave is very peaked, such
that breaking is incipient, but mesh convergence appears to
be reached with Δ𝑥∕𝑑1 = 0.005. A spurious peak appears
later for the two finest grid sizes and grows in amplitude
until the simulation is stopped. This uncontrolled growth
is probably due to dispersive terms reaching unphysical
values and the crest being too sharp. The results presented
in figures 13 and 14 are the ones with the grid size that
ensures mesh convergence for the rest of the simulation,
Δ𝑥∕𝑑1 = 0.005. As a take-way message, as already pointed
out by Kennedy et al. (2001), it appears preferable to use
one of the versions of the KKCD model proposed by these
authors rather than the original WKGS from Wei et al.
(1995), which overestimates shoaling effects in this case and
predicts premature breaking of the highest wave.
5.3. Case 3: Propagation, shoaling and run-up on

a vertical wall of a wave train
The third test case was put forward by Benoit et al. (2018)

to assess the suitability of a large range of numerical models
for the simulation of tsunami-type wave trains. Dispersive
and nonlinear effects come into play, making it appropriate
for our purpose. The geometry is represented in figure 17.
The domain is 30 km long, with first a flat region of 25
km, then a foreshore slope of 1 ∶ 125 over a distance of
4 km, a final 1 km flat reef and vertical walls on both sides.
The case consists of the generation and propagation over a
long distance of a dispersive shock wave (DSW) –or undular
bore– from an initial disturbance, showing weakly to mildly
dispersive effects. The analytical expression for the initial

Coulaud et al.: Preprint submitted to Elsevier Page 18 of 26



45.5 45.6 45.7 45.8

x/d1

0.06

0.08

0.1

0.12

0.14

0.16
η
/d

1

46.5 46.6 46.7 46.8

x/d1

47.5 47.6 47.7

x/d1

Figure 16: Case 2 - Free surface profiles at 𝑡
√

𝑔∕𝑑1 = 41, 43.1 and 45 from left to right for WKGS model with 3 grid sizes: solid
blue line: Δ𝑥∕𝑑1 = 0.00125, dashed red line: Δ𝑥∕𝑑1 = 0.005, and dotted green line: Δ𝑥∕𝑑1 = 0.01.

free surface profile is:

𝜂(𝑥) =

⎧

⎪

⎨

⎪

⎩

5m 𝑥 ⩽ 1.9 km
0m 𝑥 ⩾ 2.1 km
2.5

(

1 − tanh
(

Δ
(

𝑥
𝑥0

− 1
)))

elsewhere
(87)

with Δ = 229.756 and 𝑥0 = 2 km. The initial velocity is null
throughout the domain. The generated wave train propagates
towards the right wall, shoals over the variable seabed and
is thus affected by nonlinear effects, and finally runs up the
right wall and is reflected.
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Figure 17: Case 3 - Geometry, initial condition and boundary
conditions.

The simulation time is 1 hour of physical time so that
the leading waves have time to reflect on the right wall,
travel back towards the left wall, and run up. The solution
obtained with whispers3D again serves as a reference. In
Benoit et al. (2018), this solution was found to be almost
identical to the one obtained with two other codes solving the
FNPF equations with different numerical methods, so there
is strong confidence that whispers3D accurately predicts the
FNPF solution. The solution computed with a code based
on the NSWE is also shown to highlight the importance of
dispersion in this case.

One of the most discriminating features of this case is
the value of the maximum run-up height on the right wall
(MRHRW), as shown in figure 24 and table 5 discussed
below, and this variable is used as a proxy when performing
convergence studies and selection of discretisation param-
eters. Table 4 shows the relative error on MRHRW for

Model Δ𝑥 = 8m Δ𝑥 = 4m Δ𝑥 = 2m Δ𝑥 = 1m

Peregrine 2.1 0.18 0.012 0.00069
SGN 1.13 0.089 0.0059 0.00035
MS 0.37 0.045 0.0078 0.0014

Nwogu 2.6 0.23 0.016 0.00092
WKGS 8.7 1.6 0.11 0.0033
oKKCD 6.3 0.83 0.043 0.0015
diKKCD 3.5 0.35 0.021 0.0021
eSGN 1.5 0.12 0.0079 0.00046

Table 4
Case 3 - Relative error (in %) on the MRHRW, compared to
the solution with Δ𝑥 = 0.5m for different grid sizes and each
model.

the eight models and different grid sizes, compared to the
solution obtained with each model with Δ𝑥 = 0.5m. For a
given grid size, WKGS consistently shows the highest errors,
up to two orders of magnitude higher than the lowest errors.
Although this probably depends on the way the dispersive
terms are written and the numerical methods used, this
indicates that, depending on the model, mesh-independent
results can be achieved with quite different grid sizes. Based
on these errors, the chosen grid size for the computations
with all the BT models is Δ𝑥 = 2m. For all models,
the error on the predicted maximum run-up on the right
wall is lower than 3 cm or 0.11%. The chosen time step is
Δ𝑡 = 0.0625 s to accurately capture the sharp run-up peak
on the right vertical wall. The maximum Courant number
for the simulations with the BT models with the chosen time
step is approximately 0.78. Figure 18 shows the convergence
of the MRHRW for decreasing grid sizes (panel (a)) and
time steps (panel (b)) and for the eSGN model. One can
check that the present numerical scheme achieves fourth-
order convergence in time and space. Similar convergence
orders were obtained with all the BT models and are not
shown here for conciseness.

With the grid and time steps that were selected above
(Δ𝑥 = 2m,Δ𝑡 = 0.0625 s), we first look at snapshots of the
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(b) Time step convergence.
Figure 18: Case 3 - Mesh and time step convergence of
the maximum run-up height on the right wall (MRHRW) for
the eSGN model. The reference solutions are computed with
Δ𝑥 = 0.5m and Δ𝑡 = 0.015 625 s for the mesh convergence, and
Δ𝑥 = 2m and Δ𝑡 = 0.015 625 s for the time step convergence.

free surface at 𝑡 = 30 s, 5 min, 15 min and 21 min. Figure
19 shows the free surface profiles of the reference solution
over the whole domain at those four instants. From the initial
condition, a DSW propagating towards the right is formed,
as can be seen at 𝑡 = 30 s. The wave train then propagates
towards the right, shoals, and reaches the wall a little after
𝑡 = 21 min.

We now compare the profiles for the various BT models
in figures (figs. 20 to 23). Again, the free surface profiles are
split over three figures, each with the reference solution, for
better visualisation: one with the weakly nonlinear models
and the NSWE, one with the two variants of the SGN
equations, and one with the variants of WKGS and KKCD.
At 𝑡 = 30 s, the leading wave on the right is well repro-
duced by all BT models, but the following waves deviate
from the reference solution, probably because the dispersive
properties of the models are not sufficient to model the short
waves generated. Since the NSWE are non-dispersive, no
undulations appear, and the solution is a right-moving shock
(light blue solid line).

At 𝑡 = 5min (figure 21), the leading waves have prop-
agated over a few kilometres and are very close to the
reference solution for all BT models. This is because the
first wave has a wavelength of approximately 600 m, so
𝜇 ≈ 0.52 and all models have sufficient dispersive properties
for such relative depths. The following waves are shorter
and therefore more dispersive, as 𝜇 ≈ 1.3 for the shorter

waves on figure 21. These trailing waves propagate at a lower
phase speed than the reference solution, particularly for the
Peregrine and SGN models, which have the most limited
dispersive properties. The same is true for the MS model
despite it having enhanced dispersion.

At 𝑡 = 15min (figure 22), the leading waves have almost
reached the region with sloping seabed. Wave amplitudes
are slightly overestimated with Nwogu’s and Peregrine’s
models, with a slight phase advance. At least for the relative
water depth considered, the amplitude overestimation with
Peregrine’s model compensates for the phase lag previously
noticed due to its dispersion limitations. With the MS and
SGN models, there is again a phase delay, especially for
the trailing shorter waves. In addition, the MS model un-
derestimates wave heights a little. Overall, all BT models
propagated the leading part of the wave train with acceptable
to good accuracy, as shown in figure 22(b).

Figure 23 shows the leading waves at 𝑡 = 21min in
the final flat region after the shoaling phase, where the
nonlinear effects have been handled quite differently by the
models. The elevation of the crest of the leading wave is
about 9.5 m with whispers3D (in a still water depth of
18 m); thus, nonlinearity is very high. The overestimation
of the wave amplitude and the phase advance previously
observed with Nwogu’s and Peregrine’s models are more
pronounced now for all the waves, as the elevation of the
first crest is around 1 m too high with these models. WKGS
overestimates this elevation by 0.4 m approximately, and the
oKKCD solution is almost superimposed with the reference
solution. diKKCD, eSGN, SGN and MS underestimate the
elevation by 0.2 m to 1.4 m in that order, with a slight phase
lag. The NSWE severely underestimate the wave height by
around 6.4 m. Some phase delay is again present with MS
and SGN equations for the shorter waves.

We then look at the MRHRW, with figure 24 showing
the time series of the run-up on the right wall. Figure 24a
shows the run-up of the leading waves for all models, and the
run-up peak for the different models is then shown over the
three figures 24b, 24c and 24d. The same trends in elevation
and phase delay noticed in figure 23 for the models can be
seen. The signal is qualitatively well reproduced by all the
dispersive models, while the NSWE predict a flat run-up
peak with a slight phase delay and an elevation underes-
timated by almost 75 %. In figure 24a, except for the first
wave with the largest amplitude, all fully nonlinear models
are very close to the reference solution, even if a slight phase
lag remains for the SGN equations (which have more limited
dispersive properties compared to the others). The models
from Nwogu and Peregrine systematically predict higher and
earlier peaks. MS model deviates less from whispers3D,
but some discrepancies can be observed. Full nonlinearity
then gives noticeable improvements here. More differences
appear when looking at the run-up peak with the first wave.
Table 5 shows the MRHRW for all models, as well as the
relative error with the reference value of 24.41 m predicted
by whispers3D. The run-up signal on the right wall was
recorded at each time step, and the maximum value was
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Figure 19: Case 3 - Free surface profiles of the reference solution at 𝑡 = 30 s, 5 min, 15 min and 21 min.

found by cubic interpolation on a finer time discretisation.
The weakly nonlinear models of Peregrine and Nwogu pre-
dict the run-up peak 1.5 to 2 s earlier than whispers3D.
Although they predicted a too-high amplitude for the leading
wave before run-up, they underestimated the MRHRW by
5 to 7 %. The peak with the MS model is almost in phase
but considerably underestimated (≈ 29 %). The same can be
observed for the SGN and eSGN equations, with a relative
error of −16 and −17 % on the MRHRW, respectively.
Finally, WKGS, oKKCD and diKKCD are the closest to
the reference signal. WKGS overestimates the MRHRW by
≈ 5 %, diKKCD underestimates it by ≈ 7 %, and oKKCD
predicts a peak value within 0.1 % of the reference one. The
wave train then de-shoals, propagates towards the left wall
and runs up. After de-shoaling the leading waves are similar
for the different models, as noted by Kazolea and Ricchiuto
(2024), and the same is observed for the run-up signal on the
left wall, therefore it is not shown here.

Finally, figure 25 shows the spatial profile of the wave
crest envelope before the run-up on the right wall, i.e. the
amplitude of the leading wave before the run-up, over the
shoaling and run-up areas. One can identify the overshoaling
of Peregrine’s and Nwogu’s models, which overestimate
wave amplitude up to the run-up (figure 25a). Except for MS
and SGN equations, which underestimate wave amplitude,
especially over the last kilometre, all other models are much
closer to the reference solution. Most discrepancies appear
over the last 20 m in figure 25b.

Apart from the run-up peak, fully nonlinear models
better predict the wave train’s evolution in this case. The
SGN equations, fully nonlinear but with limited dispersion,
give more accurate results than the dispersion-enhanced

Model
Instant of
maximum
run-up (s)

Maximum
run-up
height

MRHRW
(m)

Relative error
on MRHRW

w.r.t.
whispers3D

(%)
NSWE 1281.7 6.18 -74.7

Peregrine 1274.8 22.75 -6.8
SGN 1277.2 20.19 -17.3
MS 1276.9 17.41 -28.7

Nwogu 1275.0 23.17 -5.1
WKGS 1276.4 25.59 4.8
oKKCD 1276.5 24.41 0
diKKCD 1276.7 22.6 -7.4
eSGN 1276.5 20.52 -16

whispers3D 1276.5 24.41

Table 5
Case 3 - Summary of time and height of the maximum run-up
on the right wall for the different models.

weakly nonlinear models of Nwogu or MS. The enhanced
eSGN equations, apart from propagating the shorter waves
with a more accurate phase speed, give results similar to
those obtained with the original SGN equations. Among the
weakly nonlinear models, Nwogu’s and Peregrine’s models
give almost identical results for the leading and highest
waves and are the least accurate regarding the run-up signal,
setting aside the first peak. This agrees with the findings of
Filippini et al. (2015) that when nonlinear effects are signifi-
cant, the behaviour of weakly nonlinear BT models only de-
pends on whether they are formulated in amplitude-velocity
form (spatial derivatives of the velocity in the momentum
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Figure 20: Case 3 - Free surface profiles at 𝑡 = 30 s.

equation) or amplitude-flux form (derivatives of the flux).
Improved models like the one from Nwogu give the same
results as simpler models like Peregrine’s since they are
in amplitude-velocity form, while MS is in amplitude-flux
form, explaining the two different behaviours. MS model
gives the most differences regarding the MRHRW and the
highest amplitude waves after shoaling, but the rest of the
results are satisfactory. The WKGS model and the KKCD
variants, particularly the oKKCD version, give very accurate
results in this case, especially regarding the run-up peak and
compared with eSGN.

6. Conclusion
In this work, eight variants of some weakly dispersive

Boussinesq-type models among the most popular in the
literature, either weakly or fully nonlinear, were compared.
All models are reformulated with an auxiliary variable to
deal with mixed space-time derivatives in the momentum
equation, and an elliptic equation has to be solved at each
time step to recover the representative horizontal velocity.
These eight models are compared on three test cases of
non-breaking long-wave propagation. The strong dispersive
effects in case 1 allow us to discriminate between the im-
proved models and the others. In cases 2 and 3, showing only
weak to mild dispersive effects, few differences are observed
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Figure 21: Case 3 - Free surface profiles at 𝑡 = 5min.

unless wave nonlinearity becomes important, which is the
case mainly after the shoaling phase. We summarise here
the main findings concerning the different models:

• Weakly nonlinear models: Peregrine’s model cannot
deal with the generation of high-order harmonics in
case 1 due to its limited dispersion. In the other less
dispersive cases, with a predominance of nonlinear-
ity, it gives similar results to Nwogu’s model despite
their different dispersive characteristics, since they are
both amplitude-velocity models. They generally pre-
dict overshoaling and tend to overestimate wave and
crest heights overall, including in the highly dispersive
case 1 for Nwogu’s model, although some underes-
timation is seen in case 2 and on the run-up peak
in case 3. The MS model, however, systematically
underestimates wave heights, leading also to some
phase delay in case 3 despite its enhanced dispersive
properties, and seems to give the worst results in all
cases.

• Fully nonlinear models: Similarly to Peregrine’s model,
the insufficient dispersive properties of the original
SGN equations prevent them from correctly mod-
elling the propagation of the wave train in case 1. In
the other cases, they give quite similar results as the
MS model, with a significant underestimation of the
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Figure 22: Case 3 - Free surface profiles at 𝑡 = 15min.

wave heights and crests. The eSGN equations with
their enhanced dispersive properties underestimate
only slightly less wave heights in cases 2 and 3, where
nonlinearity prevails, but provide the best results of
all models in case 1. All the variants of the WKGS
and KKCD models give at least a little better results
than eSGN in cases 2 and 3. Among them, the original
WKGS equations appear to be the least accurate
overall, overestimating wave heights in all 3 cases,
in addition to the issues of significant overshoaling
mentioned in case 2. The diKKCD variant gives
different results in case 1, but not obviously better,
and shows somewhat similar performances in the
other cases, underestimating wave heights similarly
to eSGN yet to a lesser extent. One should also keep
in mind that this model is the most stable out of the
WKGS and KKCD variants and does not suffer from
trough instabilities. oKKCD is the most accurate of
all models in cases 2 and 3, giving almost identical
results to diKKCD in case 1.

The superiority of fully nonlinear models may not appear
obvious at first sight since, in nonlinear cases, the weakly
nonlinear models of Nwogu (1993) and Peregrine (1967)
give results somewhat closer to the reference than the vari-
ants of the SGN equations for instance. However, fully
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Figure 23: Case 3 - Free surface profiles at 𝑡 = 21min.

nonlinear models appear more reliable and show consistent
results in different situations, whereas weakly nonlinear
models can behave differently. In particular, Peregrine’s and
Nwogu’s models can either overestimate or underestimate
wave height and run-up. To simulate wave propagation up
to the shore, a wave-breaking model must be coupled to the
weakly dispersive equations, with breaking detection criteria
triggering energy dissipation mechanisms based on local
wave parameters. Those criteria must be calibrated, which
is rendered more difficult by the fact that weakly nonlinear
models do not systematically predict correct wave heights or
with the same tendencies compared to the reference.

Among the eight BT variants investigated here, the fully
nonlinear model of Kennedy et al. (2001) extending the
model of Wei et al. (1995) with a time-varying reference el-
evation and using the optimal choice of parameters, referred
to as oKKCD in this work, reveals the most accurate overall.
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