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ABSTRACT

In coastal areas, variable bottom effects significantly enhance wave nonlinearity and complicate wave
propagation. Itis of practical interest to characterize the nonlinear effect on the statistics of free surface
displacements and particle kinematics. In this work, we take advantage of a fully nonlinear potential
flow model to investigate the statistics of unidirectional irregular waves propagating over an uneven
bottom. By confronting the simulated results with existing experimental results (free surface elevation
and horizontal velocity beneath the mean sea level) in the temporal, spectral, and statistical domains,
we show the high fidelity of the model in predicting the nonlinear irregular wave kinematics. As the
relative importance of low-frequency harmonics becomes lower for acceleration, the model perfor-
mance in predicting the measured horizontal acceleration is even better than that for the measured
horizontal velocity. The empirical statistical distributions of velocity and acceleration in both hori-
zontal and vertical directions are compared with both the normal (Gaussian) and the log-normal (LN)
distributions. The latter requires skewness as an input in addition to the mean and standard deviation
of the signal. We notice that, unlike the free surface displacement generally of positive skewness,
the signal of velocities and accelerations are sometimes characterized by negative skewness. In such
cases, the negative LN distribution should be adopted. Although the LN distribution has rarely been
used for short-term statistics of wave elevation and kinematics, the detailed comparisons presented
here demonstrate very good performance for all kinematic variables. In particular, in the area fol-
lowing a rapid reduction of water depth, where the sea-state is out-of-equilibrium, the heavy tails in
the distributions are well reproduced by the LN model, indicating some generality and merits of this

model.

1. Introduction

The statistics of Wave kinematics is of great importance
in coastal and ocean engineering. For ships and offshore
structures, it is keenly related to wave-induced forces (Kriebel,
1998; Wilson, 2002; Goda, 2010) while in coastal areas, it
is relevant to the prediction of bottom shear stress, scour,
and deposit of sediments. Wave kinematics is one of the key
factors dominating the topography evolution, especially in
coastal estuaries and along shorelines (Fredsge and Deigaard,
1992; Elfrink and Baldock, 2002; Ostrowski et al., 2018).
In the transition areas between offshore and coastal regions,
as bottom effects get more and more involved, waves are
subject to refraction, reflection, shoaling, and dissipation in-
duced by bottom friction. The wave nonlinearity is gradu-
ally enhanced due to the reduction of water depth (Freilich
and Guza, 1984), eventually, depth-limited breaking occurs
in the surf zone. Recent studies show that, if the depth tran-
sition is sufficiently rapid and the relative water depth af-
ter depth change is below k,h < 1.3 (with k, denoting the
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wave number corresponding to the spectral peak frequency
and A the water depth), the waves are dominated by the so-
called non-equilibrium dynamics after shoaling, as argued in
Trulsen et al. (2012, 2020). The non-equilibrium dynamics
is, in essence, the interaction of bound and free superhar-
monics excited by the depth change (Li et al., 2021). Out-
of-equilibrium sea-states are characterized by rapid spectral
evolution, local and distinct non-Gaussian statistics, and in-
tensified freak wave occurrence probability (see e.g. Zhang
et al., 2019; Zheng et al., 2020; Bonar et al., 2021; Zhang
and Benoit, 2021; Lawrence et al., 2021, 2022). Further-
more, in the context of global warming, coastal and ocean
engineering is faced with extreme events becoming more fre-
quent and challenging than ever (see e.g. Didenkulova and
Pelinovsky, 2016, 2020; Didenkulova et al., 2023; Shi et al.,
2024). Consequently, a better understanding and statisti-
cal/deterministic prediction of the strongly nonlinear free sur-
face displacement and the flow field underneath remain of
paramount importance (Zelt et al., 1995; Stansberg et al.,
1995; Aggarwal et al., 2016; Vested et al., 2020; Li et al.,
2023; Deng et al., 2023).

For linear sea-states, the irregular wave train is assumed
to be the sum of an infinite number of statistically indepen-
dent harmonic components with random phases. According
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Part Il: Statistical distributions of kinematics

to the central limit theorem, the probability density func-
tion (PDF) of the free surface elevation (FSE), the orbital
velocities and accelerations underneath all follow the Gaus-
sian (G) distribution (Longuet-Higgins, 1952; You, 2009).
For nonlinear sea-states, the nonlinearity modifies the statis-
tics of FSE and leads to deviations from Gaussianity. Vari-
ous approaches have been put forward to take these nonlin-
ear effects into account in the FSE distribution, such as the
asymptotic approach based on Stokes expansion which can
be extended to high order within the validity range of the
Stokes theory (Tayfun and Alkhalidi, 2020; Fuhrman et al.,
2023; Klahn et al., 2024); the transformed Gaussian method
which models the non-Gaussian FSE distribution using the
knowledge associated with the Gaussian processes (Ochi and
Wang, 1984; Socquet-Juglard et al., 2005; Winterstein and
Haver, 2015); and the moment-based approach which build
the FSE models based on the first three or four cumulants of
the random process. The distribution model in Edgeworth’s
form of the Gram-Charlier (G-C) series (Longuet-Higgins,
1963), the Gamma model (Bolles et al., 2019), the exponen-
tial Gamma model (Herrman et al., 1997; Kobayashi et al.,
1998), and the log-normal (LN) distribution (Zhang et al.,
2024) belong to this third category. In Zhang et al. (2024),
the LN distribution has been extensively compared with six
models of different types for the FSE distribution, show-
ing advantages in capturing the heavy tails in the empirical
PDF of FSE. As for FSE, nonlinearity also results in devia-
tions in the statistics of kinematics from Gaussianity. How-
ever, studies about non-Gaussian velocity and acceleration
distributions are relatively limited. The G-C type model
was adopted to describe the non-Gaussianity of the distri-
bution of orbital velocity, but its performance fluctuates de-
pending on the data set (Sultan and Hughes, 1993; Song and
Wu, 2000). Considering the non-equilibrium statistics after
a rapid depth variation, the discussion on the characteristics
of kinematics statistics is rather scant, particularly due to the
lack of high-quality and long-duration time series of either
measured or simulated kinematic variables.

In the companion Part I article (Benoit et al., 2024) (here-
after referred to as BZM?2024 for brevity), we have detailed
the computation of wave kinematics within the framework of
the fully nonlinear potential flow (FNPF) code Whispers3D
(W3D). The numerical implementation has been verified by
comparing the simulated kinematics of strongly nonlinear
regular waves with the corresponding stream function so-
lution and validated against experimental results of regular
waves propagating over an uneven bottom. After providing
further validation of the numerical code for computing the
kinematics of strongly nonlinear irregular waves over an un-
even bottom, the main target of this work is to test the appli-
cability of the LN distribution to wave kinematics. Indeed,
the LN model has been shown in Zhang et al. (2024) to be ap-
propriate for the distribution of FSE. However, to the limit of
our knowledge, the LN distribution has never been employed
for describing the non-equilibrium statistics of particle kine-
matics in strongly variable seabed conditions.

The remainder of this article is organized as follows: In

section 2, the W3D numerical computation of wave kinemat-
ics is further validated for nonlinear irregular waves propa-
gating over a variable seabed. Comparing simulation results
with experimental measurements, we show and discuss the
time series of the horizontal velocity and acceleration, the
evolution of the corresponding spectra, and statistical mo-
ments. Section 3 presents the statistical distributions of FSE,
the horizontal and vertical components of the velocity and
acceleration. The empirical (measured and simulated) dis-
tributions are compared with the G and the LN models. Con-
clusions and perspectives are provided in section 4.

2. Experimental validation for irregular
nonlinear wave Kinematics in variable
water depth

2.1. Experimental configuration

In this section, an experimental case with irregular unidi-
rectional waves propagating in variable water depth reported
in Trulsen et al. (2020) is simulated, and we focus on the
characteristics of particle kinematics. The experiments were
performed in the University of Oslo (Norway) hydrodynam-
ics laboratory. The sketch of the bathymetry is displayed in
Fig. 1. The submerged bar is installed 10.78 m away from
the piston-type wavemaker and consists of upslope, bar crest,
and downslope sections, each of 1.6 m in length. The water
depth in the deeper flat regions is 2; = 0.53 m, and that over
the bar is 1, = 0.11 m. A series of non-breaking irregu-
lar wave configurations were tested during the experimental
campaign. In Zhang and Benoit (2021), run 3 has been sim-
ulated using W3D, with analyses of the FSE and horizontal
velocity presented. In the present work, we adopt the nu-
merical method introduced in BZM2024 to directly evaluate
the particle velocity and acceleration in both horizontal and
vertical directions, and further discuss the spectral and sta-
tistical properties of velocity and acceleration.

Incident wave conditions of Run 3 are defined by a JON-
SWAP spectrum:

_1( 1=

1o sy ],
te[-2(2)]HE

@n)!

S(f) =

where a controls the significant wave height Hy, f), is the
peak frequency, and o is the asymmetry parameter, 6; =
0.07 for f < f, and o; = 0.09 for f/ > f,. The peak
enhancement factor y = 3.3 was fixed during the experi-
mental campaign, the peak period is T, = 1/f, = L.ls,
and the incident significant wave height is H; = 0.025 m.
In this configuration, the non-dimensional parameters off-
shore of the bar read: relative depth y; = kph = 1.85,
wave steepness €; = k,a. = 0.031, and Ursell number
Ur| =

ber corresponding to T, and a, = H/ \/g the characteristic
wave amplitude. Over the bar crest, u, = 0.64, e, = 0.052,
and Ur, = 0.192.

The FSE # was measured at 91 positions with sampling
frequency f, = 125 Hz; the horizontal velocity u(z,) was

e/ /43 = 0.005, where klJ denotes the wave num-
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Figure 1: Sketch of the bathymetry used in the experiments reported in Trulsen et al. (2020)

measured with an acoustic Doppler velocimeter (ADV) de-
vice at 37 positions at the elevation z; = —0.048 m be-
low the still water level (SWL), with a sampling frequency
fs = 200 Hz. Due to the limited number of measurement
devices, the results were gathered by repeating the same ex-
periment several times. In each repetition, the experiment
lasted for 90 min, which represents a series of about 5000
waves with peak period T,.

2.2. Numerical model setup

The implementation of the kinematics computation within
the W3D model has been detailed in the part I paper and
will not be duplicated here. In the current scenario, waves
were generated and damped using relaxation zones of 3L, =
5.4 m length located at both ends of the flume, with L, ~
1.80 m denoting the wavelength corresponding to T, in water
depth A;. The space and time are discretized with constant
intervals, Ax = 0.01 m, and At = 0.01 s. The Courant—
Friedrichs—Lewy number CFL = (LA?)/(TggAx) = 1.64 in
the deeper region and 0.97 in the shallower one. The poly-
nomial order Ny = 7 is chosen.

In Fig. 2, the time series of the measured horizontal ve-
locity i(z,) and acceleration dx(zy) (evaluated from u(z)
with a finite difference method in time) at different locations
are displayed and compared with the simulated results. Here,
ii(zo) and ax(z,) denote the time series of u(zy) and ax(z)
normalized by the root-mean-square of the corresponding
signal. Note that the measured and simulated time series
need to be aligned at each location by introducing slightly
different time shifts. This could result from three sources:
(1) the measurements of u(z() did not start at the same time
in different repetitions of run 3; (ii) different wave propaga-
tion velocities (dispersion characteristics) in the numerical
and experimental flumes; (iii) small error in the installation
locations of the ADV device. Thus, the phase shift due to
different dispersion characteristics alone cannot be directly
evaluated. We anticipate that the phase shift due to the dif-
ferences in wave velocity is small. This is because the agree-
ment in the magnitudes of horizontal velocity and accelera-
tion is quite good. Therefore, the nonlinear dispersion ef-
fects should be well captured by the model.

In the experiment, the horizontal velocity u(z,) was mea-
sured at 33 locations in the range x € [—0.45,3.6] m, with
the first measuring location set over the up-slope. In our sim-
ulations, we extend this range to x € [-2,3.6] m by com-
puting wave kinematics at 15 additional locations to track

the "complete" evolution of kinematics as waves propagate
over the shoal.

2.3. Wave kinematics computation validation for
run 3 of Trulsen et al. (2020)

The spatial evolution of the frequency spectrum of u(z)
is shown in Fig. 3, with the measured one in panel (a) and the
simulated one in panel (b). To better demonstrate the evolu-
tion of harmonics with relatively low amplitudes, log;((S(f))
is plotted in Fig. 3. In Fig. 3(b), the spectral evolution of
simulated u(z) in the spatial range x € [-2,—-0.45] m is
displayed as well, although no corresponding measurement
is available in this range. It is observed that the simulated
and measured spectra are in good agreement. In Fig. 5 of
Zhang and Benoit (2021) it was noticed that the spectrum of
1 shows a beating pattern around 2 f,, (due to the interaction
between second-order free and bound harmonics). However,
such a beating pattern is not so evident in the spectrum of
u(zg). In Fig. 3(b), it is observed that the shoal starts to in-
fluence the spectral shape of u(z) in a short distance after
the beginning of the slope. The second-order harmonics in
the spectrum of u(z) are noticeably enhanced in the middle
of the bar crest. The low-frequency components of u(z) are
also enhanced over the bar. As waves leave the bar crest and
propagate over the de-shoaling zone, the spectrum of u(z)
gradually recovers a shape close to the one it had before en-
countering the bar.

The statistical parameters, skewness, asymmetry, and kur-
tosis indicate the magnitude of wave nonlinearity, and they
are defined as:

LX) =(X7), @)
IO = (M), 3
2y(X) = (X*). @)

where (-) denotes a mean operator, X denotes the random
variable with zero mean and unit standard deviation, and
H(-) is the Hilbert transform operator. Here X could be nor-
malized FSE, velocity, or acceleration. In particular, the kur-
tosis of FSE is frequently used as a proxy of freak wave prob-
ability. The extreme values in the time series of velocity and
acceleration are related to extreme forces on structures, thus
the statistical parameters of the particle kinematics below
the free surface are of interest to engineers. Fig. 4 shows the
spatial evolution of skewness, asymmetry, and kurtosis of
both measured (red curves) and simulated (black asterisks)
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Figure 2: Normalized time series of the horizontal velocity ii(z,) (a) and horizontal acceleration dx(z,) (b) recorded along the
wave flume in the simulation (red solid lines) and experiment (black dash lines).

(b)

Figure 3: Spatial evolution of the spectrum of horizontal velocity u(z,) in the experiment (a) and in the simulation (b). The
vertical dash lines indicate the extent of the submerged bar.

horizontal velocity u(z,) along the wave flume. Those of
the simulated vertical velocity w(z) (blue curves) are also
displayed despite the lack of corresponding measurements.
It is conjectured that the vertical velocity w(z,) is predicted
with high fidelity, based on the excellent agreement achieved
between simulated and measured u(z,) in both spectral and
statistical domains.

In Fig. 4(a), the evolution trends of the skewness of u(z)
and w(z,) are similar to each other, yet the modulation of

A3[w(z)] in response to the depth variation develops faster
in space than that of A3[u(zy)]. Interestingly, it is noticed
that, after the shoal, A3[u(z)] achieves local extreme value
when A;[w(zy)] vanishes, and vice versa. It indicates that
the asymmetry (in the vertical direction) does not develop
simultaneously for horizontal and vertical velocity compo-
nents. In Fig. 4(b), the asymmetry parameter (indicating
the velocity profile asymmetry in the horizontal direction)
A3[H(u(zg))] shows that the profile of u(z) first leans back-
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Figure 4: Spatial evolution of the statistical parameters of the horizontal velocity (u(z,)) and the vertical velocity (w(z,)),
skewness is shown in panel (a), asymmetry parameter in panel (b) and kurtosis in panel (c). The gray areas indicate the extent
of the submerged bar.

ward and then forward while, on the contrary, the profile
of w(z) first leans forward then backward in an averaged
sense. For the kurtosis in Fig. 4(c), A4[w(z()] achieves its
global maximum over the bar crest whereas A4[u(z)] is more
or less unchanged over the bar and is locally enhanced over
the down-slope area due to the de-shoaling effect, as it has
been pointed out in Trulsen et al. (2020) and explained in
Zhang and Benoit (2021).

Fig. 5 compares the spectral evolution of measured (in
panel a) and simulated (in panel b) ax(zy). It is observed
that in comparison to the spectral evolution of u(z;) shown
in Fig. 3, the second-order harmonics are more evident, and
the beating pattern is present in the spectral evolution of ac-
celeration. This can be explained by the linear theory, the
modulus of the particle acceleration is w times the parti-
cle velocity at the same location, thus the amplitudes of the
high-frequency harmonics are larger compared to the veloc-
ity. Note that the "beating pattern" mainly appears around
2f,, it is anticipated that the beating in higher harmonics
does not manifest because of the presence of the de-shoaling
area. In Fig. 5, it is seen that the low-frequency components
are of low amplitudes such that they are not visible with the
current colour scale. This is again in agreement with linear
theory, for long waves with w < 1 rad/s at this scale, the ac-
celeration moduli are smaller in comparison to the ones of
the velocities. The good agreement between the measured
and the simulated acceleration spectra in Fig. 5 shows the
high fidelity of W3D for computing particle acceleration be-
low strongly nonlinear irregular waves.

Fig. 6 displays the spatial evolution of statistical parame-

ters of both horizontal and vertical accelerations, with skew-
ness shown in panel (a), asymmetry parameter in panel (b),
and kurtosis in panel (c). As a general remark, the statistical
parameters of the simulated results are in excellent agree-
ment with those of the measured data. Only some minor un-
derestimations of the second local peak of kurtosis (around
x = 1.9 m) are observed. The simulated statistical parame-
ter evolution of ax(z,) seems to agree better with the mea-
surements than that of u(zy). It is possibly related to the
fact that the differences between the simulation results and
the measurements in low-frequency components are reduced
for ax(z), as indicated in Fig. 5. The statistical parame-
ters of the vertical acceleration az(z,) are superimposed in
Fig. 6, despite the lack of corresponding measurements. The
skewness A3(az(zg)) is negative over the bar crest indicating
a strongly skewed probability distribution, and the kurtosis
A4(az(zg)) achieves its global maximum value of about 5.4
shortly after the shoal and is much higher than that of ax(z).

3. Statistical distribution of nonlinear
irregular wave kinematics

3.1. Positive and negative log-normal distribution
Now we focus on the statistical distribution of water par-
ticle kinematics. Within the linear framework, both velocity
and acceleration should follow the Gaussian (G) distribution.
The wave nonlinearity would result in non-Gaussian charac-
teristics in the distributions. Recently, Zhang et al. (2024)
introduced a new distribution model of FSE of log-normal
shape, which shows very good performance in the statisti-
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Figure 5: Spatial evolution of the spectrum of horizontal acceleration ax(z,) in the experiment (a) and in the simulation (b).
The vertical dash lines indicate the shape of the submerged bar.
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Figure 6: Spatial evolution of the statistical parameters of the horizontal acceleration (ax(z,)) and the vertical acceleration
(az(zy)), skewness is shown in panel (a), asymmetry parameter in panel (b) and kurtosis in panel (c). The gray areas indicate
the submerged bar.

cal description of waves propagating over a submerged step
bottom. For completeness, we recall the definition and some
properties of the LN model.

The LN distribution is fully determined by three param-
eters: a location parameter a, a scale parameter a, and a
shape parameter z. The standard LN model of a random
variable X is defined by:

[ln (X B ap) - a5]2

272

(X - ap) ™27
©)

over the range X € (ap, +00), which we also call the "pos-
itive LN model" as the positive tail extends to +co. When
X ~ LN(ap, as, 12), one can easily verify that the random
variable Z :=In (X — a,) follows the G distribution, Z ~
G(as,rz). When the shape parameters ¢ — 0%, the LN
model tends to the G model. From now on, let us assume
that 7 > 0 and define g(z) = exp(z?) > 1. The first four
statistical moments of the distribution (5) can be obtained
analytically:

(X)=a,++/qe, (6)

o(X) = e*Vq(g-1), @)
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AX)=@+2)Vq-1, (®)
M(X)=3+(q-1) (¢’ +3¢° +6q+6) 9)

which shows that both the skewness 43 and the excess kur-
tosis 49 = 44 — 3 are both strictly positive as soon as g > 1,
ie. 7 > 0. In practice, the 3 parameters of model (5) can
be determined from the mean, standard deviation and skew-
ness of the empirical distribution using eqs. (6-8). Further-
more, as we work here with a normalized variable X =
(X = (X)) /o(X), implying (X ) = 0 and o(X) = 1, we
obtain from eqs. (6-7):

1

a, = — , (10)
14 \/qu
as=—%[lnq+ln(q—1)], (11D

showing that the location parameter a,, (i.e. the lower bound
of the definition range of X) is finite and strictly negative.
All 3 parameters of model (5) for a normalized random vari-
able are thus functions of the sole parameter g, which can
be computed from the skewness solving a cubic polynomial
equation from eq. (8). This yields:

A3 >
1+? </13+\//13+4>
A . 1/3
+[1+7 </13—\//13+4>] -1

Another interest of the LN model is that the kurtosis can
be computed from eq. (9) once ¢ is known, i.e. from the
knowledge of the skewness solely. That is, the LN model
possesses an intrinsic (fixed) Skewness—Kurtosis (S-K) re-
lationship, deduced from eqgs. (8-9):

1/3
q(/lg) =

(12)

q3+3q2+6q+6/12

Agg=24—-3=
0T @ +dq+4 3

13)
with g(4;) given by eq. (12). This relation is explicit yet
cumbersome. It can be approximated by noticing that g varies
in a limited range above 1: when A5 increases from 0 (Gaus-
sian case) to 1.5 (which is a quite large upper bound consid-
ering the results shown in Figures 4(b) and 6(b)), g increases
from 1 to 1.217 approximately. Consequently, introducing
6=q—1<<1,eq. (13) can be reformulated as:

16 + 156 + 682 + 53
9466 + 62

Ao _
2
/13

; (14)

15 32 1 3
_E1+R6+§5 +Eé 15)
9 1+25+ 582

and then approximated as:

/140 16 ( 13 1 5 3
Za0 10 5+—5——5>.
,1% 9 216

It is remarkable that, at leading order, the S—K relationship
of the LN model exactly matches the S—K relationship A4 =

13 1
MPTERET) (16)

%6/1% derived by Mori and Kobayashi (1998) from a model
of second-order in wave steepness. Furthermore, the depen-
dency of the right-hand-side of eq. (16) in 45 is weak over
the usual range of A5: taking again Ay = 1.5 as an indicative
upper bound, one finds that the term in brackets in eq. (16)
does not exceed 1.063. This closeness with the S—K relation
of Mori and Kobayashi (1998) can be regarded as another ad-
vantage of the LN model, as recently shown in Zhang et al.
(2024) for the FSE statistics in variable depth conditions.
However, we notice that the above "positive" LN model,
adopted for FSE distribution in Zhang et al. (2024), is limited
to non-negative skewness (due to the nature of eq. (8)). The

362

363

364

FSE is generally of positive skewness (Longuet-Higgins, 1963)36s

whereas the signal of velocities and accelerations are some-
times characterized by negative skewness (see e.g. Figs. 4(b)
and 6(b)). We accommodate that by reversing the sign of the
signal (which consequently reverses the sign of skewness)
and then by flipping the obtained distribution, the LN distri-
bution can then be used to describe random processes with
negative skewness (therefore called "negative" LN distribu-
tion). With this simple manipulation of the signal, the LN
distribution can not only be used for the FSE but also for the
fluid kinematics underneath.

In the following, the statistical distributions of both mea-
sured and simulated FSE/velocity/acceleration at eight posi-
tions are displayed, and compared with the G distribution (as
a linear expectation) and the LN distribution (as a nonlinear
prediction). The chosen locations are considered represen-
tative, as they locate in the shoaling area (x = —0.45 m, and
x = 0 m which is the end of the up-slope), over the bar crest
(x=065m,x=0.75m, x = 1.05mand x = 1.5 m), in
the de-shoaling area (x = 2.2 m), and after the submerged
bar (x = 3.6 m). It should be mentioned that the LN distri-
bution can be built based on either the measured skewness
or the simulated one. Here we adopt the measured skew-
ness for the distribution of FSE, and the simulated skewness
for the distributions of velocity and acceleration. The latter
is chosen because the simulated results of velocity and ac-
celeration cover a longer spatial extent than in the measure-
ments. Furthermore, the vertical components of velocity and
acceleration are available from simulations only for validat-
ing the LN model. We confirm that such a choice does not
significantly differ from using the other way around, as the
skewness of FSE/velocity/acceleration is reproduced in the
simulation with high accuracy, as shown previously.

3.2. Distribution of FSE

In Fig. 7, it can be seen that the empirical PDF of the
measured FSE is close to the Gaussian distribution in panel
(a), the non-Gaussianity gradually develops when waves prop-
agate over the shallower region, as shown in panels (b—d).
Then the deviation of the empirical PDF from Gaussianity
reduces when waves further propagate over the bar and the
de-shoaling area, as shown in panels (e-h). Overall, the em-
pirical PDFs of the measured and simulated FSE agree in
a point-to-point manner, which was shown in Zhang and
Benoit (2021). Interestingly, the LN model proves capa-
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Figure 7: Empirical distribution of the measured and simulated FSE at eight locations along the wave flume, and the
corresponding predictions of the G and LN distributions.
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Figure 8: Spatial evolution of the exceedance probability for
normalized FSE (77) higher than 3. The gray areas indicate
the submerged bar.

ble of accurately capturing the marked changes in empirical
PDFs throughout the spatial domain.

To further illustrate the performance of the numerical
model as well as the normal and LN distributions in pre-
dicting the empirical PDF of the measured and simulated
FSE, the spatial evolution of the probability that the FSE ex-
ceeds a given level is analyzed. This level is set to 3 for
7 here, which means we consider P(i; > 3) (with P de-
noting the exceedance probability function) or equivalently
P(n > 0.75H,) where H_, = 40(n) approximates the local
significant wave height. Other exceedance levels could be
considered similarly, the particular value of 3 is selected here
as a balance between the wish to focus on the highest values
of FSE and the need to keep a significant number of samples
above that level in the empirical distributions. To put this
value into perspective, according to the Gaussian distribu-
tion Py (77 > 3) ~ 1.351073. The evolution of P(7j > 3) for

all 91 probes displayed in Fig. 8 shows that both W3D and
the LN model predict the tail part of the measured empiri-
cal FSE distribution with high accuracy. Good predictions
are achieved not only for the near-equilibrium wave statis-
tics before the shoal but also for the out-of-equilibrium wave
statistics over the uneven seabed region. The black solid line
represents the Gaussian prediction, which is a constant for all
positions. The values of measured and predicted (by numer-
ical simulation and LN model) P(i; > 3) are higher than the
prediction of normal distribution in the shallower flat region
by a factor of 6.7 approximately, then lower in de-shoaling
area. After the de-shoaling area, P(# > 3) seems to recover
the prediction of the normal distribution.

3.3. Distributions of orbital velocities at

zo = —0.048 m
Figs. 9 and 10 show the empirical/normal/LN distribu-
tions of particle velocity at z, = —0.048 m in horizontal

and vertical directions, respectively. Fig. 10 shows only the
empirical PDF of simulated vertical velocity w due to the
lack of corresponding measurements. In Fig. 9, the PDF
of u(%o) from the simulation is in excellent agreement with
that from measurements. Both empirical PDFs deviate from
the normal distribution over the bar crest yet the deviations
are not as significant as in the empirical distributions of 7.
The LN distribution shows good performance in general, de-
spite some minor overestimation of the largest positive val-
ues at x = 0.65 m and 0.75 m. In Fig. 10, the LN distri-
bution predicts the empirical PDF of the simulated w quite
well in general. However, at x = 0.65 m and 0.75 m where
A3(w) ~ 0, the empirical PDFs are indeed symmetric with
respect to w0 = 0 but are slightly higher than the prediction
of normal distribution on both sides. At these two locations,
the LN distribution is very close to the normal distribution,
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Figure 9: Empirical distribution of the measured and simulated horizontal velocity i@(z,) at z, = —0.048 m at eight locations
along the wave flume, and the corresponding predictions of the G and LN distributions.

thus not capturing the non-Gaussian feature of the empirical
distributions.

As for 77, the probabilities of # and w exceeding 3 are dis-
played for all locations where the velocities are measured or
simulated. Fig. 11 shows the comparison of the exceedance
probabilities of the empirical, normal, and LN distributions
for the horizontal (in panel a) and the vertical velocity (in
panel b). Again, the LN distributions are obtained based
on the simulated skewness. The P(z > 3) in the measure-
ment is well predicted by the LN distribution as well as the
numerical simulation. However, for the simulated P(w0 >
3) shown in panel (b), the LN distribution under-predicts
the exceedance probability. This under-prediction is related
to the fact that the empirical distribution is symmetric yet
higher than Gaussian prediction.

3.4. Distributions of Eulerian accelerations at
zg = —0.048 m

The horizontal and vertical acceleration distributions are
shown in Fig. 12 and 13 respectively, comparing the empiri-
cal PDFs with predictions of normal and LN models at eight
locations. In Fig. 12, the change of horizontal acceleration
distribution as waves propagate over the bar is evidently dif-
ferent from that of the FSE and the horizontal velocity. Af-
ter entering the shallower flat region, the empirical PDF be-
comes non-Gaussian in the sense that the probability of both
positive and negative ax are higher than Gaussian expecta-
tion. This feature is well captured by the numerical simu-
lation, yet it is beyond the capability of the normal and LN
distribution. In Fig. 13, the vertical acceleration probability
is enhanced in the negative range of az, which is related to
its phase. The positive range of dz is not as low as predicted
by the LN distribution, but more or less in agreement with
the normal distribution.

In Fig. 14, the exceedance probabilities of acceleration in

both horizontal (panel a) and vertical (panel b) directions are
displayed. As the vertical acceleration is mainly of negative
skewness, P(dz < —3) is shown instead of P(dz > 3). In
panel (a), the performance of the LN distribution for P(ax)
is acceptable but not as good as for other variables. This
is again due to the non-Gaussian behaviour of the empirical
distribution, which is symmetric but higher than Gaussian in
both positive and negative ranges of dx. In panel (b), the LN
distribution captures well the evolution of P(dz < —3).

To summarize, as random variables, the FSE, horizontal
and vertical velocity, and acceleration, all follow the normal
distribution when wave nonlinearity is insignificant. Non-
Gaussian characteristics develop as waves propagate over the
uneven bottom, and deviations from the normal distribution
become clear. Our analyses show that, with the skewness
of the random process given as an additional input, the LN
distribution has great capabilities in describing random pro-
cesses with evident non-Gaussian behaviour, especially for
the abnormally high probability of large events. The LN dis-
tribution is quite general and can be applied not only for the
FSE of nonlinear irregular waves but also for the particle
kinematics underneath. The LN distribution has some lim-
itations though, it cannot describe non-Gaussian statistical
processes with symmetric PDF (i.e. with vanishing skew-
ness but non-trivial kurtosis).

4. Conclusion

In this study, the statistics of particle kinematics under-
neath nonlinear irregular waves propagating over an uneven
bottom were investigated experimentally and numerically.
We adopted the new formulations of orbital velocities and
accelerations in the FNPF wave model Whispers3D recently
derived and validated in BZM2024. Here, the numerical
model was further validated against experimental results of
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flume, and the corresponding predictions of the G and LN distributions.
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Figure 11: Spatial evolution of the exceedance probability for normalized horizontal velocity i(z,) in panel (a) and vertical
velocity tw(z,) in panel (b) higher than 3. The gray areas indicate the extent of the submerged bar.

the non-equilibrium wave evolution over a submerged bar
with steep upslope and downslope reported in Trulsen et al.
(2020). We chose Run 3 of the experiments as a high-quality
measurement of the horizontal particle velocity below the
FSE is available. Very good agreement is achieved in tem-
poral, spectral, and statistical domains for simulated veloc-
ities and accelerations compared to the corresponding mea-
surements. In particular, the W3D model simulates the non-
equilibrium statistics variations (asymmetry, skewness and
kurtosis) induced by the rapid changes in water depth over
the shoal with high fidelity.

With the validated model, we then investigated the statis-
tical distributions of particle kinematics for nonlinear irreg-
ular waves over the uneven bottom. Considering a long time
series of about 5000 waves, the PDF of both experimental
measurements and W3D simulations were built for the hori-
zontal and vertical components of both velocity and acceler-
ation. The simulated and measured empirical distributions

are compared with the Gaussian (linear) and the log-normal
(nonlinear) distributions. The latter was very recently pro-
posed in Zhang et al. (2024) for positively skewed FSE sig-
nals. Here, it is adopted for negatively skewed signals by
flipping the distribution. The key finding of this study is that
the LN model is capable of describing most of the nonlinear
features accompanying wave transformations in the shoaling
and de-shoaling zones, including non-equilibrium effects. It
represents the empirical distributions of FSE, velocities, and
accelerations very accurately, indicating some generality of
this model in describing the statistics of nonlinear wave pro-
cesses. The LN model is particularly suitable for character-
izing the heavy tail of the distributions, which is the primary
interest in engineering applications. Another advantage lies
in the fact that it possesses an intrinsic skewness-kurtosis (S—
K) relationship (15), which we have shown here to be very
close to the second-order relationship derived by Mori and
Kobayashi (1998). Furthermore, we have provided a very
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Figure 12: Empirical distribution of the measured and simulated horizontal acceleration ax(z,) at z, = —0.048 m at eight
locations along the wave flume, and the corresponding predictions of the G and LN distributions.
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Figure 13: Empirical distribution of the simulated vertical acceleration dz(z,) at z, = —0.048 m at eight locations along the
wave flume, and the corresponding predictions of the G and LN distributions.

accurate approximation of this S—K relation (16) which al-
lows a straightforward calculation of the kurtosis once the
skewness is known (from either simulations or experiments).

As anext step of this work, in the spirit of Li et al. (2023),
the model will be applied to the computation of nonlinear
wave loads on marine structures in variable seabed condi-
tions, in particular on slender structures for which a Morison-
type approach can be used, e.g. monopiles for offshore wind
turbines. Given that the LN model shows good generality
in describing the heavy tail in the statistical distributions, it
is worth trying to apply this model for predicting extreme
wave load probability on structures. Additional validation

of kinematics conditions will also be done in other condi-
tions, in particular with multidirectional waves and multi-
modal seas. Besides, additional validations of the LN model
against other laboratory and field measurements of FSE as
well as the kinematics underneath have to be conducted, to
better establish its capabilities and limitations.
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