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A B S T R A C T
In coastal areas, variable bottom effects significantly enhance wave nonlinearity and complicate wave
propagation. It is of practical interest to characterize the nonlinear effect on the statistics of free surface
displacements and particle kinematics. In this work, we take advantage of a fully nonlinear potential
flow model to investigate the statistics of unidirectional irregular waves propagating over an uneven
bottom. By confronting the simulated results with existing experimental results (free surface elevation
and horizontal velocity beneath the mean sea level) in the temporal, spectral, and statistical domains,
we show the high fidelity of the model in predicting the nonlinear irregular wave kinematics. As the
relative importance of low-frequency harmonics becomes lower for acceleration, the model perfor-
mance in predicting the measured horizontal acceleration is even better than that for the measured
horizontal velocity. The empirical statistical distributions of velocity and acceleration in both hori-
zontal and vertical directions are compared with both the normal (Gaussian) and the log-normal (LN)
distributions. The latter requires skewness as an input in addition to the mean and standard deviation
of the signal. We notice that, unlike the free surface displacement generally of positive skewness,
the signal of velocities and accelerations are sometimes characterized by negative skewness. In such
cases, the negative LN distribution should be adopted. Although the LN distribution has rarely been
used for short-term statistics of wave elevation and kinematics, the detailed comparisons presented
here demonstrate very good performance for all kinematic variables. In particular, in the area fol-
lowing a rapid reduction of water depth, where the sea-state is out-of-equilibrium, the heavy tails in
the distributions are well reproduced by the LN model, indicating some generality and merits of this
model.

1. Introduction14

The statistics of Wave kinematics is of great importance15

in coastal and ocean engineering. For ships and offshore16

structures, it is keenly related to wave-induced forces (Kriebel,17

1998; Wilson, 2002; Goda, 2010) while in coastal areas, it18

is relevant to the prediction of bottom shear stress, scour,19

and deposit of sediments. Wave kinematics is one of the key20

factors dominating the topography evolution, especially in21

coastal estuaries and along shorelines (Fredsøe and Deigaard,22

1992; Elfrink and Baldock, 2002; Ostrowski et al., 2018).23

In the transition areas between offshore and coastal regions,24

as bottom effects get more and more involved, waves are25

subject to refraction, reflection, shoaling, and dissipation in-26

duced by bottom friction. The wave nonlinearity is gradu-27

ally enhanced due to the reduction of water depth (Freilich28

and Guza, 1984), eventually, depth-limited breaking occurs29

in the surf zone. Recent studies show that, if the depth tran-30

sition is sufficiently rapid and the relative water depth af-31

ter depth change is below 𝑘𝑝ℎ < 1.3 (with 𝑘𝑝 denoting the32
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wave number corresponding to the spectral peak frequency 33

and ℎ the water depth), the waves are dominated by the so- 34

called non-equilibrium dynamics after shoaling, as argued in 35

Trulsen et al. (2012, 2020). The non-equilibrium dynamics 36

is, in essence, the interaction of bound and free superhar- 37

monics excited by the depth change (Li et al., 2021). Out- 38

of-equilibrium sea-states are characterized by rapid spectral 39

evolution, local and distinct non-Gaussian statistics, and in- 40

tensified freak wave occurrence probability (see e.g. Zhang 41

et al., 2019; Zheng et al., 2020; Bonar et al., 2021; Zhang 42

and Benoit, 2021; Lawrence et al., 2021, 2022). Further- 43

more, in the context of global warming, coastal and ocean 44

engineering is faced with extreme events becoming more fre- 45

quent and challenging than ever (see e.g. Didenkulova and 46

Pelinovsky, 2016, 2020; Didenkulova et al., 2023; Shi et al., 47

2024). Consequently, a better understanding and statisti- 48

cal/deterministic prediction of the strongly nonlinear free sur- 49

face displacement and the flow field underneath remain of 50

paramount importance (Zelt et al., 1995; Stansberg et al., 51

1995; Aggarwal et al., 2016; Vested et al., 2020; Li et al., 52

2023; Deng et al., 2023). 53

For linear sea-states, the irregular wave train is assumed 54

to be the sum of an infinite number of statistically indepen- 55

dent harmonic components with random phases. According 56
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Part II: Statistical distributions of kinematics

to the central limit theorem, the probability density func-57

tion (PDF) of the free surface elevation (FSE), the orbital58

velocities and accelerations underneath all follow the Gaus-59

sian (G) distribution (Longuet-Higgins, 1952; You, 2009).60

For nonlinear sea-states, the nonlinearity modifies the statis-61

tics of FSE and leads to deviations from Gaussianity. Vari-62

ous approaches have been put forward to take these nonlin-63

ear effects into account in the FSE distribution, such as the64

asymptotic approach based on Stokes expansion which can65

be extended to high order within the validity range of the66

Stokes theory (Tayfun and Alkhalidi, 2020; Fuhrman et al.,67

2023; Klahn et al., 2024); the transformed Gaussian method68

which models the non-Gaussian FSE distribution using the69

knowledge associated with the Gaussian processes (Ochi and70

Wang, 1984; Socquet-Juglard et al., 2005; Winterstein and71

Haver, 2015); and the moment-based approach which build72

the FSE models based on the first three or four cumulants of73

the random process. The distribution model in Edgeworth’s74

form of the Gram-Charlier (G–C) series (Longuet-Higgins,75

1963), the Gamma model (Bolles et al., 2019), the exponen-76

tial Gamma model (Herrman et al., 1997; Kobayashi et al.,77

1998), and the log-normal (LN) distribution (Zhang et al.,78

2024) belong to this third category. In Zhang et al. (2024),79

the LN distribution has been extensively compared with six80

models of different types for the FSE distribution, show-81

ing advantages in capturing the heavy tails in the empirical82

PDF of FSE. As for FSE, nonlinearity also results in devia-83

tions in the statistics of kinematics from Gaussianity. How-84

ever, studies about non-Gaussian velocity and acceleration85

distributions are relatively limited. The G–C type model86

was adopted to describe the non-Gaussianity of the distri-87

bution of orbital velocity, but its performance fluctuates de-88

pending on the data set (Sultan and Hughes, 1993; Song and89

Wu, 2000). Considering the non-equilibrium statistics after90

a rapid depth variation, the discussion on the characteristics91

of kinematics statistics is rather scant, particularly due to the92

lack of high-quality and long-duration time series of either93

measured or simulated kinematic variables.94

In the companion Part I article (Benoit et al., 2024) (here-95

after referred to as BZM2024 for brevity), we have detailed96

the computation of wave kinematics within the framework of97

the fully nonlinear potential flow (FNPF) code Whispers3D98

(W3D). The numerical implementation has been verified by99

comparing the simulated kinematics of strongly nonlinear100

regular waves with the corresponding stream function so-101

lution and validated against experimental results of regular102

waves propagating over an uneven bottom. After providing103

further validation of the numerical code for computing the104

kinematics of strongly nonlinear irregular waves over an un-105

even bottom, the main target of this work is to test the appli-106

cability of the LN distribution to wave kinematics. Indeed,107

the LN model has been shown in Zhang et al. (2024) to be ap-108

propriate for the distribution of FSE. However, to the limit of109

our knowledge, the LN distribution has never been employed110

for describing the non-equilibrium statistics of particle kine-111

matics in strongly variable seabed conditions.112

The remainder of this article is organized as follows: In113

section 2, the W3D numerical computation of wave kinemat- 114

ics is further validated for nonlinear irregular waves propa- 115

gating over a variable seabed. Comparing simulation results 116

with experimental measurements, we show and discuss the 117

time series of the horizontal velocity and acceleration, the 118

evolution of the corresponding spectra, and statistical mo- 119

ments. Section 3 presents the statistical distributions of FSE, 120

the horizontal and vertical components of the velocity and 121

acceleration. The empirical (measured and simulated) dis- 122

tributions are compared with the G and the LN models. Con- 123

clusions and perspectives are provided in section 4. 124

2. Experimental validation for irregular 125

nonlinear wave kinematics in variable 126

water depth 127

2.1. Experimental configuration 128

In this section, an experimental case with irregular unidi- 129

rectional waves propagating in variable water depth reported 130

in Trulsen et al. (2020) is simulated, and we focus on the 131

characteristics of particle kinematics. The experiments were 132

performed in the University of Oslo (Norway) hydrodynam- 133

ics laboratory. The sketch of the bathymetry is displayed in 134

Fig. 1. The submerged bar is installed 10.78 m away from 135

the piston-type wavemaker and consists of upslope, bar crest, 136

and downslope sections, each of 1.6 m in length. The water 137

depth in the deeper flat regions is ℎ1 = 0.53 m, and that over 138

the bar is ℎ2 = 0.11 m. A series of non-breaking irregu- 139

lar wave configurations were tested during the experimental 140

campaign. In Zhang and Benoit (2021), run 3 has been sim- 141

ulated using W3D, with analyses of the FSE and horizontal 142

velocity presented. In the present work, we adopt the nu- 143

merical method introduced in BZM2024 to directly evaluate 144

the particle velocity and acceleration in both horizontal and 145

vertical directions, and further discuss the spectral and sta- 146

tistical properties of velocity and acceleration. 147

Incident wave conditions of Run 3 are defined by a JON-
SWAP spectrum:

𝑆(𝑓 ) =
𝛼𝑔2

(2𝜋)4
1
𝑓 5

exp

[

−5
4

(𝑓𝑝
𝑓

)4]

𝛾
exp

[

− 1
2

(

𝑓−𝑓𝑝
𝜎𝐽 𝑓𝑝

)2
]

, (1)

where 𝛼 controls the significant wave height 𝐻𝑠, 𝑓𝑝 is the 148

peak frequency, and 𝜎𝐽 is the asymmetry parameter, 𝜎𝐽 = 149

0.07 for 𝑓 < 𝑓𝑝 and 𝜎𝐽 = 0.09 for 𝑓 > 𝑓𝑝. The peak 150

enhancement factor 𝛾 = 3.3 was fixed during the experi- 151

mental campaign, the peak period is 𝑇𝑝 = 1∕𝑓𝑝 = 1.1 s, 152

and the incident significant wave height is 𝐻𝑠 = 0.025 m. 153

In this configuration, the non-dimensional parameters off- 154

shore of the bar read: relative depth 𝜇1 = 𝑘𝑝ℎ = 1.85, 155

wave steepness 𝜖1 = 𝑘𝑝𝑎𝑐 = 0.031, and Ursell number 156

𝑈𝑟1 = 𝜖∕𝜇3 = 0.005, where 𝑘𝑝 denotes the wave num- 157

ber corresponding to 𝑇𝑝 and 𝑎𝑐 = 𝐻𝑠∕
√

8 the characteristic 158

wave amplitude. Over the bar crest, 𝜇2 = 0.64, 𝜖2 = 0.052, 159

and 𝑈𝑟2 = 0.192. 160

The FSE 𝜂 was measured at 91 positions with sampling 161

frequency 𝑓𝑠 = 125 Hz; the horizontal velocity 𝑢(𝑧0) was 162
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Figure 1: Sketch of the bathymetry used in the experiments reported in Trulsen et al. (2020)

measured with an acoustic Doppler velocimeter (ADV) de-163

vice at 37 positions at the elevation 𝑧0 = −0.048 m be-164

low the still water level (SWL), with a sampling frequency165

𝑓𝑠 = 200 Hz. Due to the limited number of measurement166

devices, the results were gathered by repeating the same ex-167

periment several times. In each repetition, the experiment168

lasted for 90 min, which represents a series of about 5000169

waves with peak period 𝑇𝑝.170

2.2. Numerical model setup171

The implementation of the kinematics computation within172

the W3D model has been detailed in the part I paper and173

will not be duplicated here. In the current scenario, waves174

were generated and damped using relaxation zones of 3𝐿𝑝 =175

5.4 m length located at both ends of the flume, with 𝐿𝑝 ≈176

1.80m denoting the wavelength corresponding to 𝑇𝑝 in water177

depth ℎ1. The space and time are discretized with constant178

intervals, Δ𝑥 = 0.01 m, and Δ𝑡 = 0.01 s. The Courant–179

Friedrichs–Lewy number CFL ≡ (𝐿Δ𝑡)∕(𝑇SFΔ𝑥) = 1.64 in180

the deeper region and 0.97 in the shallower one. The poly-181

nomial order 𝑁𝑇 = 7 is chosen.182

In Fig. 2, the time series of the measured horizontal ve-183

locity 𝑢̄(𝑧0) and acceleration 𝑎𝑥(𝑧0) (evaluated from 𝑢(𝑧0)184

with a finite difference method in time) at different locations185

are displayed and compared with the simulated results. Here,186

𝑢̄(𝑧0) and 𝑎𝑥(𝑧0) denote the time series of 𝑢(𝑧0) and 𝑎𝑥(𝑧0)187

normalized by the root-mean-square of the corresponding188

signal. Note that the measured and simulated time series189

need to be aligned at each location by introducing slightly190

different time shifts. This could result from three sources:191

(i) the measurements of 𝑢(𝑧0) did not start at the same time192

in different repetitions of run 3; (ii) different wave propaga-193

tion velocities (dispersion characteristics) in the numerical194

and experimental flumes; (iii) small error in the installation195

locations of the ADV device. Thus, the phase shift due to196

different dispersion characteristics alone cannot be directly197

evaluated. We anticipate that the phase shift due to the dif-198

ferences in wave velocity is small. This is because the agree-199

ment in the magnitudes of horizontal velocity and accelera-200

tion is quite good. Therefore, the nonlinear dispersion ef-201

fects should be well captured by the model.202

In the experiment, the horizontal velocity 𝑢(𝑧0)was mea-203

sured at 33 locations in the range 𝑥 ∈ [−0.45, 3.6] m, with204

the first measuring location set over the up-slope. In our sim-205

ulations, we extend this range to 𝑥 ∈ [−2, 3.6] m by com-206

puting wave kinematics at 15 additional locations to track207

the "complete" evolution of kinematics as waves propagate 208

over the shoal. 209

2.3. Wave kinematics computation validation for 210

run 3 of Trulsen et al. (2020) 211

The spatial evolution of the frequency spectrum of 𝑢(𝑧0) 212

is shown in Fig. 3, with the measured one in panel (a) and the 213

simulated one in panel (b). To better demonstrate the evolu- 214

tion of harmonics with relatively low amplitudes, log10(𝑆(𝑓 )) 215

is plotted in Fig. 3. In Fig. 3(b), the spectral evolution of 216

simulated 𝑢(𝑧0) in the spatial range 𝑥 ∈ [−2,−0.45] m is 217

displayed as well, although no corresponding measurement 218

is available in this range. It is observed that the simulated 219

and measured spectra are in good agreement. In Fig. 5 of 220

Zhang and Benoit (2021) it was noticed that the spectrum of 221

𝜂 shows a beating pattern around 2𝑓𝑝 (due to the interaction 222

between second-order free and bound harmonics). However, 223

such a beating pattern is not so evident in the spectrum of 224

𝑢(𝑧0). In Fig. 3(b), it is observed that the shoal starts to in- 225

fluence the spectral shape of 𝑢(𝑧0) in a short distance after 226

the beginning of the slope. The second-order harmonics in 227

the spectrum of 𝑢(𝑧0) are noticeably enhanced in the middle 228

of the bar crest. The low-frequency components of 𝑢(𝑧0) are 229

also enhanced over the bar. As waves leave the bar crest and 230

propagate over the de-shoaling zone, the spectrum of 𝑢(𝑧0) 231

gradually recovers a shape close to the one it had before en- 232

countering the bar. 233

The statistical parameters, skewness, asymmetry, and kur- 234

tosis indicate the magnitude of wave nonlinearity, and they 235

are defined as: 236

𝜆3(𝑋̄) =
⟨

𝑋̄3⟩ , (2)
𝜆3[(𝑋̄)] =

⟨

(𝑋̄)3
⟩

, (3)
𝜆4(𝑋̄) =

⟨

𝑋̄4⟩ . (4)
where ⟨⋅⟩ denotes a mean operator, 𝑋̄ denotes the random 237

variable with zero mean and unit standard deviation, and 238

(⋅) is the Hilbert transform operator. Here 𝑋̄ could be nor- 239

malized FSE, velocity, or acceleration. In particular, the kur- 240

tosis of FSE is frequently used as a proxy of freak wave prob- 241

ability. The extreme values in the time series of velocity and 242

acceleration are related to extreme forces on structures, thus 243

the statistical parameters of the particle kinematics below 244

the free surface are of interest to engineers. Fig. 4 shows the 245

spatial evolution of skewness, asymmetry, and kurtosis of 246

both measured (red curves) and simulated (black asterisks) 247

Zhang et al.: Preprint submitted to Elsevier Page 3 of 13



Part II: Statistical distributions of kinematics

Figure 2: Normalized time series of the horizontal velocity 𝑢̄(𝑧0) (a) and horizontal acceleration 𝑎𝑥(𝑧0) (b) recorded along the
wave flume in the simulation (red solid lines) and experiment (black dash lines).

Figure 3: Spatial evolution of the spectrum of horizontal velocity 𝑢(𝑧0) in the experiment (a) and in the simulation (b). The
vertical dash lines indicate the extent of the submerged bar.

horizontal velocity 𝑢(𝑧0) along the wave flume. Those of248

the simulated vertical velocity 𝑤(𝑧0) (blue curves) are also249

displayed despite the lack of corresponding measurements.250

It is conjectured that the vertical velocity 𝑤(𝑧0) is predicted251

with high fidelity, based on the excellent agreement achieved252

between simulated and measured 𝑢(𝑧0) in both spectral and253

statistical domains.254

In Fig. 4(a), the evolution trends of the skewness of 𝑢(𝑧0)255

and 𝑤(𝑧0) are similar to each other, yet the modulation of256

𝜆3[𝑤(𝑧0)] in response to the depth variation develops faster 257

in space than that of 𝜆3[𝑢(𝑧0)]. Interestingly, it is noticed 258

that, after the shoal, 𝜆3[𝑢(𝑧0)] achieves local extreme value 259

when 𝜆3[𝑤(𝑧0)] vanishes, and vice versa. It indicates that 260

the asymmetry (in the vertical direction) does not develop 261

simultaneously for horizontal and vertical velocity compo- 262

nents. In Fig. 4(b), the asymmetry parameter (indicating 263

the velocity profile asymmetry in the horizontal direction) 264

𝜆3[(𝑢(𝑧0))] shows that the profile of 𝑢(𝑧0) first leans back- 265
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Figure 4: Spatial evolution of the statistical parameters of the horizontal velocity (𝑢(𝑧0)) and the vertical velocity (𝑤(𝑧0)),
skewness is shown in panel (a), asymmetry parameter in panel (b) and kurtosis in panel (c). The gray areas indicate the extent

of the submerged bar.

ward and then forward while, on the contrary, the profile266

of 𝑤(𝑧0) first leans forward then backward in an averaged267

sense. For the kurtosis in Fig. 4(c), 𝜆4[𝑤(𝑧0)] achieves its268

global maximum over the bar crest whereas 𝜆4[𝑢(𝑧0)] is more269

or less unchanged over the bar and is locally enhanced over270

the down-slope area due to the de-shoaling effect, as it has271

been pointed out in Trulsen et al. (2020) and explained in272

Zhang and Benoit (2021).273

Fig. 5 compares the spectral evolution of measured (in274

panel a) and simulated (in panel b) 𝑎𝑥(𝑧0). It is observed275

that in comparison to the spectral evolution of 𝑢(𝑧0) shown276

in Fig. 3, the second-order harmonics are more evident, and277

the beating pattern is present in the spectral evolution of ac-278

celeration. This can be explained by the linear theory, the279

modulus of the particle acceleration is 𝜔 times the parti-280

cle velocity at the same location, thus the amplitudes of the281

high-frequency harmonics are larger compared to the veloc-282

ity. Note that the "beating pattern" mainly appears around283

2𝑓𝑝, it is anticipated that the beating in higher harmonics284

does not manifest because of the presence of the de-shoaling285

area. In Fig. 5, it is seen that the low-frequency components286

are of low amplitudes such that they are not visible with the287

current colour scale. This is again in agreement with linear288

theory, for long waves with 𝜔 < 1 rad/s at this scale, the ac-289

celeration moduli are smaller in comparison to the ones of290

the velocities. The good agreement between the measured291

and the simulated acceleration spectra in Fig. 5 shows the292

high fidelity of W3D for computing particle acceleration be-293

low strongly nonlinear irregular waves.294

Fig. 6 displays the spatial evolution of statistical parame-295

ters of both horizontal and vertical accelerations, with skew- 296

ness shown in panel (a), asymmetry parameter in panel (b), 297

and kurtosis in panel (c). As a general remark, the statistical 298

parameters of the simulated results are in excellent agree- 299

ment with those of the measured data. Only some minor un- 300

derestimations of the second local peak of kurtosis (around 301

𝑥 = 1.9 m) are observed. The simulated statistical parame- 302

ter evolution of 𝑎𝑥(𝑧0) seems to agree better with the mea- 303

surements than that of 𝑢(𝑧0). It is possibly related to the 304

fact that the differences between the simulation results and 305

the measurements in low-frequency components are reduced 306

for 𝑎𝑥(𝑧0), as indicated in Fig. 5. The statistical parame- 307

ters of the vertical acceleration 𝑎𝑧(𝑧0) are superimposed in 308

Fig. 6, despite the lack of corresponding measurements. The 309

skewness 𝜆3(𝑎𝑧(𝑧0)) is negative over the bar crest indicating 310

a strongly skewed probability distribution, and the kurtosis 311

𝜆4(𝑎𝑧(𝑧0)) achieves its global maximum value of about 5.4 312

shortly after the shoal and is much higher than that of 𝑎𝑥(𝑧0). 313

3. Statistical distribution of nonlinear 314

irregular wave kinematics 315

3.1. Positive and negative log-normal distribution 316

Now we focus on the statistical distribution of water par- 317

ticle kinematics. Within the linear framework, both velocity 318

and acceleration should follow the Gaussian (G) distribution. 319

The wave nonlinearity would result in non-Gaussian charac- 320

teristics in the distributions. Recently, Zhang et al. (2024) 321

introduced a new distribution model of FSE of log-normal 322

shape, which shows very good performance in the statisti- 323
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Figure 5: Spatial evolution of the spectrum of horizontal acceleration 𝑎𝑥(𝑧0) in the experiment (a) and in the simulation (b).
The vertical dash lines indicate the shape of the submerged bar.
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Figure 6: Spatial evolution of the statistical parameters of the horizontal acceleration (𝑎𝑥(𝑧0)) and the vertical acceleration
(𝑎𝑧(𝑧0)), skewness is shown in panel (a), asymmetry parameter in panel (b) and kurtosis in panel (c). The gray areas indicate

the submerged bar.

cal description of waves propagating over a submerged step324

bottom. For completeness, we recall the definition and some325

properties of the LN model.326

The LN distribution is fully determined by three param-
eters: a location parameter 𝑎𝑝, a scale parameter 𝑎𝑠, and a
shape parameter 𝜏. The standard LN model of a random
variable 𝑋 is defined by:

𝑝𝐿𝑁 (𝑋) = 1
(

𝑋 − 𝑎𝑝
)

𝜏
√

2𝜋
exp

⎛

⎜

⎜

⎝

−

[

ln
(

𝑋 − 𝑎𝑝
)

− 𝑎𝑠
]2

2𝜏2

⎞

⎟

⎟

⎠

(5)

over the range 𝑋 ∈ (𝑎𝑝,+∞), which we also call the "pos- 327

itive LN model" as the positive tail extends to +∞. When 328

𝑋 ∼ LN(𝑎𝑝, 𝑎𝑠, 𝜏2), one can easily verify that the random 329

variable 𝑍 ∶= ln
(

𝑋 − 𝑎𝑝
) follows the G distribution, 𝑍 ∼ 330

G(𝑎𝑠, 𝜏2). When the shape parameters 𝜏 → 0+, the LN 331

model tends to the G model. From now on, let us assume 332

that 𝜏 > 0 and define 𝑞(𝜏) ≡ exp(𝜏2) > 1. The first four 333

statistical moments of the distribution (5) can be obtained 334

analytically: 335

⟨𝑋⟩ = 𝑎𝑝 +
√

𝑞 𝑒𝑎𝑠 , (6)
𝜎(𝑋) = 𝑒𝑎𝑠

√

𝑞(𝑞 − 1), (7)
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𝜆3(𝑋) = (𝑞 + 2)
√

𝑞 − 1, (8)
𝜆4(𝑋) = 3 + (𝑞 − 1)

(

𝑞3 + 3𝑞2 + 6𝑞 + 6
) (9)

which shows that both the skewness 𝜆3 and the excess kur-336

tosis 𝜆40 ≡ 𝜆4−3 are both strictly positive as soon as 𝑞 > 1,337

i.e. 𝜏 > 0. In practice, the 3 parameters of model (5) can338

be determined from the mean, standard deviation and skew-339

ness of the empirical distribution using eqs. (6-8). Further-340

more, as we work here with a normalized variable 𝑋̄ ≡341
(

𝑋 −
⟨

𝑋̄
⟩)

∕𝜎(𝑋), implying ⟨

𝑋̄
⟩

= 0 and 𝜎(𝑋̄) = 1, we342

obtain from eqs. (6-7):343

𝑎𝑝 = − 1
√

𝑞 − 1
, (10)

𝑎𝑠 = −1
2
[ln 𝑞 + ln (𝑞 − 1)], (11)

showing that the location parameter 𝑎𝑝 (i.e. the lower bound
of the definition range of 𝑋̄) is finite and strictly negative.
All 3 parameters of model (5) for a normalized random vari-
able are thus functions of the sole parameter 𝑞, which can
be computed from the skewness solving a cubic polynomial
equation from eq. (8). This yields:

𝑞(𝜆3) =
[

1 +
𝜆3
2

(

𝜆3 +
√

𝜆23 + 4
)]1∕3

+
[

1 +
𝜆3
2

(

𝜆3 −
√

𝜆23 + 4
)]1∕3

− 1

(12)

Another interest of the LN model is that the kurtosis can
be computed from eq. (9) once 𝑞 is known, i.e. from the
knowledge of the skewness solely. That is, the LN model
possesses an intrinsic (fixed) Skewness–Kurtosis (S–K) re-
lationship, deduced from eqs. (8-9):

𝜆40 = 𝜆4 − 3 =
𝑞3 + 3𝑞2 + 6𝑞 + 6

𝑞2 + 4𝑞 + 4
𝜆23 (13)

with 𝑞(𝜆3) given by eq. (12). This relation is explicit yet344

cumbersome. It can be approximated by noticing that 𝑞 varies345

in a limited range above 1: when 𝜆3 increases from 0 (Gaus-346

sian case) to 1.5 (which is a quite large upper bound consid-347

ering the results shown in Figures 4(b) and 6(b)), 𝑞 increases348

from 1 to 1.217 approximately. Consequently, introducing349

𝛿 ≡ 𝑞 − 1 << 1, eq. (13) can be reformulated as:350

𝜆40
𝜆23

= 16 + 15𝛿 + 6𝛿2 + 𝛿3

9 + 6𝛿 + 𝛿2
, (14)

= 16
9

1 + 15
16𝛿 +

3
8𝛿

2 + 1
16𝛿

3

1 + 2
3𝛿 +

1
9𝛿

2
, (15)

and then approximated as:
𝜆40
𝜆23

≈ 16
9

(

1 + 13
48

𝛿 + 1
12

𝛿2 − 5
216

𝛿3
)

. (16)

It is remarkable that, at leading order, the S–K relationship351

of the LN model exactly matches the S–K relationship 𝜆40 =352

16
9 𝜆

2
3 derived by Mori and Kobayashi (1998) from a model 353

of second-order in wave steepness. Furthermore, the depen- 354

dency of the right-hand-side of eq. (16) in 𝜆3 is weak over 355

the usual range of 𝜆3: taking again 𝜆3 = 1.5 as an indicative 356

upper bound, one finds that the term in brackets in eq. (16) 357

does not exceed 1.063. This closeness with the S–K relation 358

of Mori and Kobayashi (1998) can be regarded as another ad- 359

vantage of the LN model, as recently shown in Zhang et al. 360

(2024) for the FSE statistics in variable depth conditions. 361

However, we notice that the above "positive" LN model, 362

adopted for FSE distribution in Zhang et al. (2024), is limited 363

to non-negative skewness (due to the nature of eq. (8)). The 364

FSE is generally of positive skewness (Longuet-Higgins, 1963),365

whereas the signal of velocities and accelerations are some- 366

times characterized by negative skewness (see e.g. Figs. 4(b) 367

and 6(b)). We accommodate that by reversing the sign of the 368

signal (which consequently reverses the sign of skewness) 369

and then by flipping the obtained distribution, the LN distri- 370

bution can then be used to describe random processes with 371

negative skewness (therefore called "negative" LN distribu- 372

tion). With this simple manipulation of the signal, the LN 373

distribution can not only be used for the FSE but also for the 374

fluid kinematics underneath. 375

In the following, the statistical distributions of both mea- 376

sured and simulated FSE/velocity/acceleration at eight posi- 377

tions are displayed, and compared with the G distribution (as 378

a linear expectation) and the LN distribution (as a nonlinear 379

prediction). The chosen locations are considered represen- 380

tative, as they locate in the shoaling area (𝑥 = −0.45 m, and 381

𝑥 = 0 m which is the end of the up-slope), over the bar crest 382

(𝑥 = 0.65 m, 𝑥 = 0.75 m, 𝑥 = 1.05 m and 𝑥 = 1.5 m), in 383

the de-shoaling area (𝑥 = 2.2 m), and after the submerged 384

bar (𝑥 = 3.6 m). It should be mentioned that the LN distri- 385

bution can be built based on either the measured skewness 386

or the simulated one. Here we adopt the measured skew- 387

ness for the distribution of FSE, and the simulated skewness 388

for the distributions of velocity and acceleration. The latter 389

is chosen because the simulated results of velocity and ac- 390

celeration cover a longer spatial extent than in the measure- 391

ments. Furthermore, the vertical components of velocity and 392

acceleration are available from simulations only for validat- 393

ing the LN model. We confirm that such a choice does not 394

significantly differ from using the other way around, as the 395

skewness of FSE/velocity/acceleration is reproduced in the 396

simulation with high accuracy, as shown previously. 397

3.2. Distribution of FSE 398

In Fig. 7, it can be seen that the empirical PDF of the 399

measured FSE is close to the Gaussian distribution in panel 400

(a), the non-Gaussianity gradually develops when waves prop- 401

agate over the shallower region, as shown in panels (b–d). 402

Then the deviation of the empirical PDF from Gaussianity 403

reduces when waves further propagate over the bar and the 404

de-shoaling area, as shown in panels (e–h). Overall, the em- 405

pirical PDFs of the measured and simulated FSE agree in 406

a point-to-point manner, which was shown in Zhang and 407

Benoit (2021). Interestingly, the LN model proves capa- 408
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Figure 7: Empirical distribution of the measured and simulated FSE at eight locations along the wave flume, and the
corresponding predictions of the G and LN distributions.
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Figure 8: Spatial evolution of the exceedance probability for
normalized FSE (𝜂̄) higher than 3. The gray areas indicate

the submerged bar.

ble of accurately capturing the marked changes in empirical409

PDFs throughout the spatial domain.410

To further illustrate the performance of the numerical411

model as well as the normal and LN distributions in pre-412

dicting the empirical PDF of the measured and simulated413

FSE, the spatial evolution of the probability that the FSE ex-414

ceeds a given level is analyzed. This level is set to 3 for415

𝜂̄ here, which means we consider 𝑃 (𝜂̄ > 3) (with 𝑃 de-416

noting the exceedance probability function) or equivalently417

𝑃 (𝜂 > 0.75𝐻𝜎) where 𝐻𝜎 ≡ 4𝜎(𝜂) approximates the local418

significant wave height. Other exceedance levels could be419

considered similarly, the particular value of 3 is selected here420

as a balance between the wish to focus on the highest values421

of FSE and the need to keep a significant number of samples422

above that level in the empirical distributions. To put this423

value into perspective, according to the Gaussian distribu-424

tion 𝑃𝐺(𝜂̄ > 3) ≈ 1.35 10−3. The evolution of 𝑃 (𝜂̄ > 3) for425

all 91 probes displayed in Fig. 8 shows that both W3D and 426

the LN model predict the tail part of the measured empiri- 427

cal FSE distribution with high accuracy. Good predictions 428

are achieved not only for the near-equilibrium wave statis- 429

tics before the shoal but also for the out-of-equilibrium wave 430

statistics over the uneven seabed region. The black solid line 431

represents the Gaussian prediction, which is a constant for all 432

positions. The values of measured and predicted (by numer- 433

ical simulation and LN model) 𝑃 (𝜂̄ > 3) are higher than the 434

prediction of normal distribution in the shallower flat region 435

by a factor of 6.7 approximately, then lower in de-shoaling 436

area. After the de-shoaling area, 𝑃 (𝜂̄ > 3) seems to recover 437

the prediction of the normal distribution. 438

3.3. Distributions of orbital velocities at 439

𝑧0 = −0.048 m 440

Figs. 9 and 10 show the empirical/normal/LN distribu- 441

tions of particle velocity at 𝑧0 = −0.048 m in horizontal 442

and vertical directions, respectively. Fig. 10 shows only the 443

empirical PDF of simulated vertical velocity 𝑤̄ due to the 444

lack of corresponding measurements. In Fig. 9, the PDF 445

of ̄𝑢(𝑧0) from the simulation is in excellent agreement with 446

that from measurements. Both empirical PDFs deviate from 447

the normal distribution over the bar crest yet the deviations 448

are not as significant as in the empirical distributions of 𝜂̄. 449

The LN distribution shows good performance in general, de- 450

spite some minor overestimation of the largest positive val- 451

ues at 𝑥 = 0.65 m and 0.75 m. In Fig. 10, the LN distri- 452

bution predicts the empirical PDF of the simulated 𝑤̄ quite 453

well in general. However, at 𝑥 = 0.65 m and 0.75 m where 454

𝜆3(𝑤̄) ∼ 0, the empirical PDFs are indeed symmetric with 455

respect to 𝑤̄ = 0 but are slightly higher than the prediction 456

of normal distribution on both sides. At these two locations, 457

the LN distribution is very close to the normal distribution, 458
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Figure 9: Empirical distribution of the measured and simulated horizontal velocity 𝑢̄(𝑧0) at 𝑧0 = −0.048 m at eight locations
along the wave flume, and the corresponding predictions of the G and LN distributions.

thus not capturing the non-Gaussian feature of the empirical459

distributions.460

As for 𝜂̄, the probabilities of 𝑢̄ and 𝑤̄ exceeding 3 are dis-461

played for all locations where the velocities are measured or462

simulated. Fig. 11 shows the comparison of the exceedance463

probabilities of the empirical, normal, and LN distributions464

for the horizontal (in panel a) and the vertical velocity (in465

panel b). Again, the LN distributions are obtained based466

on the simulated skewness. The 𝑃 (𝑢̄ > 3) in the measure-467

ment is well predicted by the LN distribution as well as the468

numerical simulation. However, for the simulated 𝑃 (𝑤̄ >469

3) shown in panel (b), the LN distribution under-predicts470

the exceedance probability. This under-prediction is related471

to the fact that the empirical distribution is symmetric yet472

higher than Gaussian prediction.473

3.4. Distributions of Eulerian accelerations at474

𝑧0 = −0.048 m475

The horizontal and vertical acceleration distributions are476

shown in Fig. 12 and 13 respectively, comparing the empiri-477

cal PDFs with predictions of normal and LN models at eight478

locations. In Fig. 12, the change of horizontal acceleration479

distribution as waves propagate over the bar is evidently dif-480

ferent from that of the FSE and the horizontal velocity. Af-481

ter entering the shallower flat region, the empirical PDF be-482

comes non-Gaussian in the sense that the probability of both483

positive and negative 𝑎𝑥 are higher than Gaussian expecta-484

tion. This feature is well captured by the numerical simu-485

lation, yet it is beyond the capability of the normal and LN486

distribution. In Fig. 13, the vertical acceleration probability487

is enhanced in the negative range of 𝑎𝑧, which is related to488

its phase. The positive range of 𝑎𝑧 is not as low as predicted489

by the LN distribution, but more or less in agreement with490

the normal distribution.491

In Fig. 14, the exceedance probabilities of acceleration in492

both horizontal (panel a) and vertical (panel b) directions are 493

displayed. As the vertical acceleration is mainly of negative 494

skewness, 𝑃 (𝑎𝑧 < −3) is shown instead of 𝑃 (𝑎𝑧 > 3). In 495

panel (a), the performance of the LN distribution for 𝑃 (𝑎𝑥) 496

is acceptable but not as good as for other variables. This 497

is again due to the non-Gaussian behaviour of the empirical 498

distribution, which is symmetric but higher than Gaussian in 499

both positive and negative ranges of 𝑎𝑥. In panel (b), the LN 500

distribution captures well the evolution of 𝑃 (𝑎𝑧 < −3). 501

To summarize, as random variables, the FSE, horizontal 502

and vertical velocity, and acceleration, all follow the normal 503

distribution when wave nonlinearity is insignificant. Non- 504

Gaussian characteristics develop as waves propagate over the 505

uneven bottom, and deviations from the normal distribution 506

become clear. Our analyses show that, with the skewness 507

of the random process given as an additional input, the LN 508

distribution has great capabilities in describing random pro- 509

cesses with evident non-Gaussian behaviour, especially for 510

the abnormally high probability of large events. The LN dis- 511

tribution is quite general and can be applied not only for the 512

FSE of nonlinear irregular waves but also for the particle 513

kinematics underneath. The LN distribution has some lim- 514

itations though, it cannot describe non-Gaussian statistical 515

processes with symmetric PDF (i.e. with vanishing skew- 516

ness but non-trivial kurtosis). 517

4. Conclusion 518

In this study, the statistics of particle kinematics under- 519

neath nonlinear irregular waves propagating over an uneven 520

bottom were investigated experimentally and numerically. 521

We adopted the new formulations of orbital velocities and 522

accelerations in the FNPF wave model Whispers3D recently 523

derived and validated in BZM2024. Here, the numerical 524

model was further validated against experimental results of 525

Zhang et al.: Preprint submitted to Elsevier Page 9 of 13



Part II: Statistical distributions of kinematics

     
10-6

10-4

10-2

100

     
 

 

 

 

     
 

 

 

 

     
 

 

 

 

-8 -4 0 4 8
10-6

10-4

10-2

100

-8 -4 0 4 8
 

 

 

 

-8 -4 0 4 8
 

 

 

 

-8 -4 0 4 8
 

 

 

 

Figure 10: Empirical distribution of the simulated vertical velocity 𝑤̄(𝑧0) at 𝑧0 = −0.048 m at eight locations along the wave
flume, and the corresponding predictions of the G and LN distributions.
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Figure 11: Spatial evolution of the exceedance probability for normalized horizontal velocity 𝑢̄(𝑧0) in panel (a) and vertical
velocity 𝑤̄(𝑧0) in panel (b) higher than 3. The gray areas indicate the extent of the submerged bar.

the non-equilibrium wave evolution over a submerged bar526

with steep upslope and downslope reported in Trulsen et al.527

(2020). We chose Run 3 of the experiments as a high-quality528

measurement of the horizontal particle velocity below the529

FSE is available. Very good agreement is achieved in tem-530

poral, spectral, and statistical domains for simulated veloc-531

ities and accelerations compared to the corresponding mea-532

surements. In particular, the W3D model simulates the non-533

equilibrium statistics variations (asymmetry, skewness and534

kurtosis) induced by the rapid changes in water depth over535

the shoal with high fidelity.536

With the validated model, we then investigated the statis-537

tical distributions of particle kinematics for nonlinear irreg-538

ular waves over the uneven bottom. Considering a long time539

series of about 5000 waves, the PDF of both experimental540

measurements and W3D simulations were built for the hori-541

zontal and vertical components of both velocity and acceler-542

ation. The simulated and measured empirical distributions543

are compared with the Gaussian (linear) and the log-normal 544

(nonlinear) distributions. The latter was very recently pro- 545

posed in Zhang et al. (2024) for positively skewed FSE sig- 546

nals. Here, it is adopted for negatively skewed signals by 547

flipping the distribution. The key finding of this study is that 548

the LN model is capable of describing most of the nonlinear 549

features accompanying wave transformations in the shoaling 550

and de-shoaling zones, including non-equilibrium effects. It 551

represents the empirical distributions of FSE, velocities, and 552

accelerations very accurately, indicating some generality of 553

this model in describing the statistics of nonlinear wave pro- 554

cesses. The LN model is particularly suitable for character- 555

izing the heavy tail of the distributions, which is the primary 556

interest in engineering applications. Another advantage lies 557

in the fact that it possesses an intrinsic skewness-kurtosis (S– 558

K) relationship (15), which we have shown here to be very 559

close to the second-order relationship derived by Mori and 560

Kobayashi (1998). Furthermore, we have provided a very 561
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Figure 12: Empirical distribution of the measured and simulated horizontal acceleration 𝑎𝑥(𝑧0) at 𝑧0 = −0.048 m at eight
locations along the wave flume, and the corresponding predictions of the G and LN distributions.
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Figure 13: Empirical distribution of the simulated vertical acceleration 𝑎𝑧(𝑧0) at 𝑧0 = −0.048 m at eight locations along the
wave flume, and the corresponding predictions of the G and LN distributions.

accurate approximation of this S–K relation (16) which al-562

lows a straightforward calculation of the kurtosis once the563

skewness is known (from either simulations or experiments).564

As a next step of this work, in the spirit of Li et al. (2023),565

the model will be applied to the computation of nonlinear566

wave loads on marine structures in variable seabed condi-567

tions, in particular on slender structures for which a Morison-568

type approach can be used, e.g. monopiles for offshore wind569

turbines. Given that the LN model shows good generality570

in describing the heavy tail in the statistical distributions, it571

is worth trying to apply this model for predicting extreme572

wave load probability on structures. Additional validation573

of kinematics conditions will also be done in other condi- 574

tions, in particular with multidirectional waves and multi- 575

modal seas. Besides, additional validations of the LN model 576

against other laboratory and field measurements of FSE as 577

well as the kinematics underneath have to be conducted, to 578

better establish its capabilities and limitations. 579
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