N

N

Kinematics of nonlinear waves over variable bathymetry.
Part I: Numerical modelling, verification and validation
Michel Benoit, Jie Zhang, Yuxiang Ma

» To cite this version:

Michel Benoit, Jie Zhang, Yuxiang Ma. Kinematics of nonlinear waves over variable bathymetry.
Part I: Numerical modelling, verification and validation. Coastal Engineering, 2024, 193, pp.104577.
10.1016/j.coastaleng.2024.104577 . hal-04681767

HAL Id: hal-04681767
https://edf.hal.science/hal-04681767v1
Submitted on 30 Aug 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://edf.hal.science/hal-04681767v1
https://hal.archives-ouvertes.fr

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Kinematics of nonlinear waves over variable bathymetry. Part I:
Numerical modelling, verification and validation

Michel Benoit*?, Jie Zhang®?* and Yuxiang Ma®

YEDF R&D, Laboratoire National d’Hydraulique et Environnement (LNHE), Chatou, France
OLHSV, Saint-Venant Hydraulics Laboratory (Ecole des Ponts, EDF R&D), Chatou, France
€Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266400, PR China

4Qingdao Innovation and Development Center of Harbin Engineering University, Qingdao 266400, PR China
¢State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, PR China

ARTICLE INFO

Keywords:

Coastal waves
Nonlinear waves
‘Wave kinematics
Numerical simulation
Statistical parameters

ABSTRACT

Fluid particle kinematics due to wave motion (i.e. orbital velocities and accelerations) at and beneath
the free surface is involved in many coastal and ocean engineering applications, e.g. estimation of
wave-induced forces on structures, sediment transport, etc. This work presents the formulations of
these kinematics fields within a fully nonlinear potential flow (FNPF) approach. In this model, the
velocity potential is approximated with a high-order polynomial expansion over the water column
using an orthogonal basis of Chebyshev polynomials of the first kind. Using the same basis, original
analytical expressions of the components of velocity and acceleration are derived in this work. The
estimation of particle accelerations in the course of the simulation involves the time derivatives of the
decomposition coefficients, which are computed with a high-order backward finite-difference scheme
in time. The capability of the numerical model in computing the particle kinematics is first validated
for regular nonlinear waves propagating over a flat bottom. The model is shown to be able to predict
both the velocity and acceleration of highly nonlinear and nearly breaking waves with negligible error
compared to the corresponding stream function wave solution. Then, for regular waves propagating
over an uneven bottom (bar-type bottom profile), the simulated results are confronted with existing
experimental data, and very good agreement is achieved up to the sixth-order harmonics for free
surface elevation, velocity and acceleration.

1. Introduction

Water wave kinematics has been studied for decades be-
cause it is of core importance in the design procedures of
coastal and harbour engineering (e.g. Fredsge and Deigaard,
1992). The distribution of total pressure, water particle ve-
locities and accelerations plays a fundamental role when eval-
uating forces on marine structures, the motion of sediments
and the evolution of coastal morphology (Freilich and Guza,
1984; Kriebel, 1998; Elfrink and Baldock, 2002; Wilson,
2002). Under the background of global warming, coastal
and harbour engineering is faced with more frequent and
disruptive extreme events (see e.g. Didenkulova and Peli-
novsky, 2016, 2020; Didenkulova et al., 2023; Shi et al.,
2024). To balance safety and economy, a better understand-
ing and prediction of the flow field beneath strongly non-
linear waves remains of paramount importance (Zelt et al.,
1995; Stansberg et al., 1995; Aggarwal et al., 2016; Vested
et al., 2020; Li et al., 2023; Deng et al., 2023).

To obtain the spatial and temporal evolution of wave kine-
matics, deterministic (phase-resolving) models are needed.
The Computational Fluid Dynamics (CFD) approach solves
the Navier—Stokes equations which account for nonlinearity,
vorticity and viscosity. It is very powerful in describing the
flow of fluids, and in offering the pressure and velocity pro-
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files. The Reynolds Averaged Navier—Stokes (RANS) equa-
tions, solved with either Lagrangian (Dalrymple and Rogers,
2006; Antuono et al., 2011) or Eulerian (Wang et al., 2009;
Higuera et al., 2013; Jacobsen et al., 2015) methods, are of-
ten used in the studies of wave breaking, wave-structure in-
teractions, and multiphase flows. One drawback of RANS
equations is the high computational burden, limiting the spa-
tial and temporal scale of the simulations. In addition, as
shown recently by Larsen et al. (2019) for instance, the ac-
curacy of computed wave kinematics is not always guaran-
teed with this kind of code, in particular in the vicinity of the
free surface, depending on the employed numerical methods
and the discretization parameters selected to solve this set of
equations numerically.

Besides, there are very efficient yet simplified wave mod-
els with assumptions on the magnitudes of wave steepness
and/or relative water depth, namely the weakly nonlinear
and dispersive models. For instance, mild slope equation,
Boussinesq equation, nonlinear Schrédinger equation, Serre-
Green-Naghdi equation belong to this class (Berkhoff, 1972;
Porter, 2003; Boussinesq, 1872; Madsen and Schiffer, 1998;
Hasimoto and Ono, 1972; Dysthe, 1979; Green et al., 1974;
Bassi et al., 2020, just to name a few in these topics). As the
name indicates, models of this type are developed for han-
dling weakly nonlinear and dispersive wave cases, i.e. in the
long-wave regime. Therefore, they assume simplified rep-
resentations of the profiles of horizontal and vertical veloc-
ity components in the vertical direction, typically using low-
order polynomial expressions (i.e. linear or quadratic). Al-
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Part I: Numerical modelling, verification and validation

though there are numerous extensions of the above-mentioned
models, all being able to include higher-order effects, they
often end up in cumbersome mathematical expressions with
high-order derivatives which are tricky for numerical imple-
mentation.

As a compromise between efficiency and accuracy, given
the viscous and turbulent effects are often negligible for wave
propagation studies, the fully nonlinear potential flow (FNPF)
model represents a powerful tool for wave modelling in a
range of dozens of wavelengths. In recent years, it has re-

ceived considerable attention and undergone substantial progress.

On the one hand, this mathematical model makes no a priori
assumption about the magnitude of wave steepness and rela-
tive water depth, thus it is capable of describing all nonlinear
features of non-overturning waves. On the other hand, it is
convenient to compute the particle velocity and acceleration
from the scalar velocity potential. Besides, it can be used
to provide input wave fields and to couple with CFD mod-
els (Paulsen et al., 2014; Decorte et al., 2021). The FNPF
model can be solved with the Boundary Element Method
(BEM) that projects the problem on the boundary surface of
the fluid domain using Green’s identity and function (Grilli
et al., 1989; Fochesato and Dias, 2006; Harris et al., 2014)
or with the so-called using "Zakharov formulation" that for-
mulates the problem with free surface variables (Zakharov,
1968; Craig and Sulem, 1993), both methods allowing for
a reduction of the dimension of the computational problem.
Among many approaches, the High-Order Spectral method
(Dommermuth, 2000; Gouin et al., 2016; Lawrence et al.,
2021a), high-order Boussinesq-type models (Madsen et al.,
2006; Bingham et al., 2009) and the Hamiltonian couple-
mode theory (Belibassakis and Athanassoulis, 2011; Papout-
sellis et al., 2019) have been used to solve the Zakharov for-
mulation of the FNPF model. Recently, a numerical solver
of the Zakharov formulation has been developed using a highly
accurate approximation of the velocity potential through the
use of a spectral approach in the vertical direction with a set
of orthogonal polynomials (Tian and Sato, 2008; Yates and
Benoit, 2015; Raoult et al., 2016; Benoit et al., 2017). The
resulting computational code, called Whispers3D (abbrevi-
ated W3D hereafter), shows excellent accuracy in predict-
ing the evolution of highly nonlinear free surface waves over
steep slopes (Zhang and Benoit, 2021; Zhang et al., 2022).
The W3D code is also capable of handling wave breaking
with various options for breaking initiation criteria and dis-
sipation mechanisms (Simon et al., 2019). However, the ca-
pability of this model in describing wave kinematics at and
beneath the free surface elevation (FSE) has not been dis-
cussed yet, except partially in the work of Zhang and Benoit
(2021). In the present work, W3D performance in calcu-
lating the velocity and acceleration directly and explicitly is
thoroughly examined, namely by first deriving analytical ex-
pressions of these kinematic fields, and then applying these
new results to compute velocity and acceleration fields for
highly nonlinear waves over flat and uneven bottoms.

The remainder of this article is organized as follows: in
section 2, the computation formulas of particle velocity and

acceleration are derived within the model formulation; sec-
tion 3 presents the verification of the method for highly non-
linear regular waves case propagating in uniform water depth
against analytical results computed with the exact stream
function (SF) theory; section 4 shows the experimental vali-
dation for a nonlinear regular wave shoaling and de-shoaling
case over a submerged trapezoidal bar, the simulation results
are compared with measurements in both spectral and statis-
tical domain.Conclusions are provided in section 5.

2. Mathematical wave model and internal
Kinematics

2.1. Overview of the wave model

Within the framework of potential theory, assuming that
(i) the fluid is inviscid and incompressible, (ii) the flow is
irrotational, and (iii) the waves are non-breaking, the fluid
motion can be described by the velocity potential ¢. In addi-
tion, the free surface tension is neglected here, for simplicity.
The above assumptions do not imply any restriction on the
magnitude of the wave steepness nor on the relative water
depth, thus the full nonlinearity and dispersion of waves are
retained. Consider a two-dimensional case in a Cartesian
coordinate system (x, z), with z-axis pointing upward and
z = 0 located at the still water level (SWL), the governing
equations of the FNPF theory are:

Ap =0 forze€[-h,n], (1)
nt+¢xnx_¢z=0 OHZ=I’], (2)

bty (B +02) +gn=0 onz=n, 3)
ho,+¢d,=0 onz=-h, @

where A denotes the Laplace operator, #(x,?) denotes the
FSE, h(x) the water depth, and g the acceleration due to
gravity. Partial derivatives are denoted with subscripts (e.g.
N, = 0n/ox).

Following Zakharov (1968) and Craig and Sulem (1993),
the FNPF problem can be reformulated as a functional of
two free surface variables, i.e., the FSE #(x, t) and the free
surface potential ¢(x, ) = ¢(x, z = 5, 1). The reformulation
allows describing the motion of the bulk fluid by rewriting
the nonlinear free surface boundary conditions (2) and (3)
as:

m=—don o+ |1+ (n)’]. ®)
7 | 1.
bi=-gn-3 @)+ 3@ 1+ ()], ©

where wW(x,1) = ¢,(x,z = n,t) denotes the vertical veloc-
ity of the water particles on the free surface. Partial deriva-
tives of ¢ are deduced via the chain rule. The two cou-
pled equations (5-6) describe the change rate of ¢ and 7
in time, with @ being the only unknown variable. Solving
0 from the boundary conditions (17, ¢) on the free surface
is the so-called Dirichlet-to-Neumann (DtN) problem. The
DtN problem is of fundamental importance for the Zakharov
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Part I: Numerical modelling, verification and validation

formulation and has been extensively studied. For a more de-
tailed introduction of various approaches for solving the DtN
problem in different models and the methodology adopted in
W3D, the readers are referred to Tian and Sato (2008); Yates
and Benoit (2015); Raoult et al. (2016), and the references
therein. Here, we first briefly review the key steps of solving
the DtN problem in W3D, then introduce the calculation of
internal kinematics in this model.

First, the physical (x, z) domain with variable bound-
aries in the vertical direction z € [—h(x), n(x, t)] is mapped
to a new (x, s) domain with fixed boundaries s € [—1, 1] via
the transformation of vertical coordinate:

2z+ h™(x,1)

s(x, z,t) = D) @)
with h%(x,7) = h(x) + 5(x, t). The potential is expressed as
o(x, s(x, z,1),t) = ¢(x, z,t) in the transformed domain, in
which the governing equations are reformulated (not shown
here, see e.g. (Yates and Benoit, 2015)).

Then, the velocity potential is projected onto an orthogo-
nal polynomial basis formed by the set of Chebyshev polyno-
mials of the first kind, denoted T,,(s), up to a maximal order
denoted Np. The potential ¢ is approximated as:

Nr

o(x,s,1) ~ quT(x, s, 1) = Z a,(x, )T, (s), (8)
n=0

where the coefficients a,(x,1),n =0, 1, ..., Ny, are the Ny +
1 unknowns of the problem (at each abscissa x). The N
parameter plays a central role in balancing model accuracy
and computational effort. Benoit et al. (2017) showed the
capability of the linearized W3D model in describing the lin-
ear dispersion, which serves as a good starting point in cali-
brating the value of N. Usually, for waves with intermedi-
ate nonlinearity propagating in finite water depth, choosing

2.2. Computation of orbital velocities

With the a, coefficients determined, the orbital veloci-
ties can be evaluated at any point in the fluid domain by tak-
ing the spatial derivatives of ¢(x, z,t). To that end, we first
give the expressions of the partial derivatives of the vertical
coordinate s(x, z, t), obtained from eq. (7), as:

h> —sht h n
sx:%zh—i(l—s)—h—i(l+s), (10)
2
5, = e an
h” —sht n
5, = — e —=——(l+5), (12)
1
Sxt = =7 [nx,(l +5)+ 7,5, + s,h:] , (13)
2n,
Sy = _(h+)2' (14)

The horizontal velocity u(x, z,t) = ¢, and the vertical
velocity w(x, z,t) = ¢, are expressed as functions of the a,
coefficients and their x-derivatives:

op op
u(x, z,0) aj:T . aISVT (15)
Nr h— — sht Nr
= Z anyxTn + X h+ X Z anTn’S,
n=0 n=1
gy, ) &
w(x,z,t) & s, asT = a, T, (16)
n=1

These expressions can be projected on the basis formed
by the orthogonal polynomials {7,,,n =0, ..., Ny} using the
inner product defined in Eq. (24) of Raoult et al. (2019), and
equivalently reformulated in a compact form, as:

Ny = 7 yields already very accurate predictions. We may Ny
need to tune N for higher values when considering highly u(x, z,t) = Z a" T, a7)
nonlinear waves (close to breaking) or very deep water con- =0 g
ditions (u ~ 10). Inserting eq. (8) into the Laplace equation Np—1
and adopting the Chebyshev-tau method to remove the de- _ w
pendency on the s variable, Ny —1 linear equations are built. wix, 51 = Ig{) “ Ty (18
With two supplementary equations drawn from the free sur-
face and bottom boundary conditions, the problem is closed with the coefficients az ,p=0,..., Nyp,and a?’, p=0,...,Np—
with N + 1 linear equations for N + 1 unknowns. 1, given analytically by:
Then, 0 can be evaluated as: .
) Ny i aZ =a,,+ h—+(h;S1p - h:Szp), 19)
w(x,t) = ——— a (x,t)n". 9

0o = gy 24D ©) w=Ls, (20)

The DtN problem is thus solved and, with 0 known, eqs. (5—
o . ) where

6) can be stepped forward in time. Several time marching
schemes are implemented in W3D. Here we used the explicit Ny
third-order strong stability preserving Runge-Kutta scheme Sy, = Z a,Bo1ns 21
with a constant time-step At. Unless otherwise stated, all n=1
first- and second-order x-derivatives in the numerical model Nr
are approximated with finite difference (FD) formulas using Sy = Z a,B,i1n- 22)
a centered stencil of N,,,, = 5 nodes, which provides fourth- n=1
order formal accuracy in the case of uniform grid size Ax.
Benoit et al.: Preprint submitted to Elsevier Page 3 of 15
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eq. (18).
2.3. Computation of Eulerian accelerations

az(x, z,t) = w;, are obtained as:

Nt Nt

axNZ nx,T +Z [s Ay x+ Sydy + S an,]
n=0 n=1

Nt

+ 5,8, 2

n=2

a,T,

n,ss»

Nt

T+ 5.8, Z

n=2

a,T,

n—-n,ss

az = Z (s;a,; + 5,a,)

228
229

projected on the basis {T,,n = 0, ...,
reformulated as:

T,

The expressions of the terms B/, and B, ,, are already
defined in appendix B of Raoult et al. (2019), thus not re-
peated here for brevity. We note the maximum degree of 7,
polynomials is Ny for u in eq. (17) and Ny — 1 for w in

The local (Eulerian) accelerations ax(x, z,t) = u, and

n,s

(23)

(24)

As for the velocity components, these expressions can be
Ny} and equivalently

(33)

g
S}

i
M

(34)

S9p =

(33)

z an,t Bp22n'

n=1

The expressions of the terms B/, B2,
provided in Raoult et al. (2019).
To compute the accelerations, we need to provide the

and B,),, are also

time derivatives of the FSE, denoted #, (appearing in eqs. (12)—

(14)), and those of the a, coefficients, denoted a,, , (appear-
ing in eqs. (23)—(24)). For #,, we use the expression at the
right-hand side of eq. (5). Then, #,, can be obtained from #,
with the 5-node centered FD scheme mentioned above.

The a,, , terms are computed using a high-order FD scheme
in time, with two options available:

e calculation of kinematics after completion of the sim-
ulation: a centered scheme around the current time
instant is used, with again a 5-node stencil:

Nt
ax(e.z.1) = 2 T, 25) a, (1) = m ——[8(a, (t + A) — a, (t — AD))
p=0 - (a,(t+2A0 —a,(t-2A0)]  (36)
Nr—1
az(x, z,t) = Z aZz Tp, (26) e calculation in the course of the simulation: an upwind
p=0 scheme is used, with the current value of a, and the
. . three previous ones (giving third-order formal accu-
231 with the coefficients a;",p =0,..., Ny,and azz,p =0,..,Np— racy):
232 1, given analytically by:
111
a,,(t) = —|—a,(t) — 3a, (t — A1)
@ =y = [n,<53p + S4p) + (1 = 277 ) oA e |
7 + 5 (t —2A1) - 34 (t-3An]. 37
nthx - +
(S1p+ 82, — 2h—+52p —h S5, + h} 56,,] As for n,,, the terms a,, ,, are then computed from the terms
a,, using again a centered 5-node FD scheme in space.
+ (h+)2 [P (Sg, = S7,) + 1(S7, + 2S5, + So,)] .
s = 2 ( S5, — (5, + S, + Sgp)) (28) 3. Vef'iﬁcation for regular nonlinear waves in
ht h+ uniform water depth
233 where In this section, we demonstrate the accuracy of the pro-
N posed formulas for computing wave kinematics of a highly
A AN nonlinear periodic wave propagating with permanent form in
S3p = Z O Byo1n Tox 29 uniform water depth. For a quantitative assessment, the nu-
n=l merical solution of SF theory is considered, which provides
G CAY a solution of arbitrarily high accuracy for this case. The SF
Sp = Z B Bptin Tox B0 Solution is obtained here by imposing that the mean Eulerian
';1 flow velocity at any point below the wave trough is null.
o 95y, Given the still water depth s, wavelength L (or, equiva-
Ssp = Z Dt Bpo1n Tor @31 lently, wave number k = 27/L), and wave height H, a reg-
r;I ular wave condition is defined. Here, we choose a challeng-
S = ZT a,.B _ ﬁ (32) ing case: (i) the relative water depth is set to h/L =1 (i.e.
o = = plln = 50 kh = 2r), achieving twice the traditionally accepted ‘deep
"~ water’ threshold (kh = 7); (ii) a very high value of the wave
Benoit et al.: Preprint submitted to Elsevier Page 4 of 15

234

236

237

238

239

240

241

242

244

245

246

247

248

250



Part I: Numerical modelling, verification and validation
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Figure 1: Normalized velocity fields (i, ) at t = 0 predicted by the W3D model in panels (a.1) and (b.1) and the corresponding
SF solution in panels (a.2) and (b.2), respectively, and the relative error of the velocities obtained with two methods in panels
(a.3) and (b.3). In each panel, the wave profile is outlined with a thick black line on the free surface.

az(z,z,t = 0) by W3D az(z,z,t = 0) in SF solution Erf[az(z, 2)]
02 1202 12 02 0.01
(a.1) (a.2) (a.3)
0 0 0
06 06 \ 0.005
-0.2 -0.2 -0.2 "
=
= .04 0 04 0o -04 " 0
I
-0.6 -0.6 -0.6 '
-0.6 -0.6 A -0.005
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-1 A2 -1 A2 - -0.01
-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
o az(z,z,t =0) by W3D o 2a’z(z, z,t = 0) of SF solution o Er[az(z, z)] x210'3
. 12 0. 120
(b.1) (b.2) (b.3)
0 0 0
06 06 . 1
-0.2 -0.2 -0.2 -
=
~ -04 0 -0.4 0 -0.4 ' 0
A ’
-0.6 -0.6 -0.6
0.6 0.6 . -4
-0.8 -0.8 -0.8
v
-1 A2 -1 A2 - 2
-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
x/L x/L xz/L

Figure 2: Normalized acceleration fields (dx, az) at t = 0 predicted by the W3D model in panels (a.1) and (b.1) and the
corresponding SF solution in panels (a.2) and (b.2), respectively, and the relative error of the accelerations obtained with two
methods in panels (a.3) and (b.3). In each panel, the wave profile is outlined with a thick black line on the free surface.

steepness is selected H/L = 12.73% (i.e. kH /2 = 0.40). practice, the wavelength is set as L = 64 m. We use 25

According to the approximate relationship giving the max- Fourier coefficients for the expansion of the SF, providing a
imum stable wave height, expressed as eq. (32) of Fenton converged solution.
(1990), such a wave steepness represents 90% of the max- The spatial profiles of FSE () and free surface poten-

imum wave height for the chosen relative water depth. In  tial (¢)) computed with the SF method are given as initial

Benoit et al.: Preprint submitted to Elsevier Page 5 of 15
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conditions to the W3D simulation. We run the W3D simu-
lation over a periodic domain covering one wavelength ex-
actly, which is discretized with 128 cells of constant size
Ax = L/128 = 0.5 m. The theoretical wave period ob-
tained from the SF solution is Typ = 27 /wgp ~ 5.916 5. We
note that, as expected, this period is shorter than the period
obtained from the dispersion relation of linear waves:

To= 25— 2% 6402 (38)
Oin  +/gk tanh (kh)

We note Typ is smaller than Tj;, because the SF wave solu-
tion follows a nonlinear dispersion relation which predicts
a faster wave phase speed for a wave with the same wave-
length in comparison to the prediction of linear dispersion.
In the simulation, a constant time step At = Tgr/128 =
0.046 s is chosen, which results in a Courant—Friedrichs—
Lewy number CFL = (LAt)/(TspAx) = 1. Initial condi-
tions for (7(x), ¢(x)) at t = —3At from the SF solution are
provided as input to W3D, and time integration is performed
over 3At toreach t = 0 s where results are compared with the
SF solution. As kh is quite large here and waves are strongly
nonlinear, we choose Ny = 11 in the W3D simulation after
calibration.

The computed velocities and accelerations are presented
hereafter in a dimensionless way, normalized with the mod-
ulus of the corresponding quantities expressed from linear
wave theory (under the same condition (&, L, H) as for the
SF solution) at mean water level (i.e., z = 0), that is & =
u/ U, W = W/ Wiy, ax = ax [ Axyy,, a2 = az [ Azy,, With:

Ujin = gkayiy /@y (39)
Win = @jin@iin (40)
Axyyy, = gkay, 41)
Azji, = ag0p, (42)

with ay;, = H /2. The relative errors are made dimension-
less by the maximum value of the modulus of the SF solu-
tion, e.g. for the vertical velocity component:

wy3p (X, z) — wsg(x, z)
|wSF(x9 z = rl)lmax

Er{w(x, 2)] = (43)

The non-dimensional velocity fields (z and w) att = 0
(with wave crest at x = 0) in both W3D simulation and SF
theory are displayed in Fig. 1, with their relative errors pro-
vided. As shown in Fig. 1(a.1-a.2) and (b.1-b.2), the ve-
locity fields (i1, w) are well predicted by the W3D model,
with the coloured maps of theoretical and simulated veloc-
ity components being visually indistinguishable from each
other. The plots (a.3-b.3) of relative error show the differ-
ences appear mainly below the wave crest and remain less
than 0.1% all over the water column. The velocity field un-
derneath the wave trough is well predicted, with the maxi-
mum relative error below 1074

The acceleration at + = 0 is also computed, which in-
volves the backward FD scheme (37) to evaluate the time
derivative of the coefficients a,(x,? = 0). Fig. 2 shows the

non-dimensional acceleration fields (dx and az) att = 0 in
both W3D simulation and SF theory, as well as the relative
error between them. Again, the simulated and theoretical
acceleration (x, z)-maps are visually identical in the current
colour scale of panels (a.1-a.2) and (b.1-b.2) in Fig. 2. The
relative error of ax in panel (a.3) achieves the most promi-
nent values beneath the wave crest. It is larger than the ones
reached for the velocity components but remains bounded by
1%. The relative error is lower for the vertical acceleration
az in panel (b.3), not exceeding 0.5%. These low error levels
confirm the accuracy of the scheme chosen to evaluate a,, ,,
bearing in mind that the model has evolved the input initial
solution for 3 time-steps to reach the state shown in Fig. 2.

In conclusion, the W3D schemes can model with accu-
racy the wave kinematics beneath highly nonlinear (close-
to-breaking) regular waves, without any sign of singularity.
Larger errors are observed below the wave crest (never ex-
ceeding 0.1% for the velocity components and 1% for the
acceleration components in the case shown here). It is also
observed that the relative errors of the horizontal compo-
nents of velocity and acceleration are a bit higher than those
of their vertical counterparts.

4. Experimental validation for regular
nonlinear waves in variable water depth

4.1. Experimental configuration

In this section, W3D’s performance is evaluated by sim-
ulating an experimental test for which detailed measurements
of the FSE and orbital velocity beneath regular waves are
available. We chose a case with regular nonlinear waves
propagating over an inhomogeneous medium performed at
the hydrodynamics laboratory of the Department of Mathe-
matics of the University of Oslo (Norway) and introduced in
Lawrence et al. (2021a). The wave flume is 24.6 m long and
0.5 m wide. A trapezoidal-shaped bar was installed on the
bottom, consisting of plane ascending and descending slopes
with 1/3.81 gradient and 1.6 m length each, and a plateau of
1.6 m length that connects the two slopes. The water depth
is changed from A; = 0.53 m before and after the bar to
h, = 0.11 m atop the bar, so that the height of the bar above
the horizontal seabed is 0.42 m (see Fig. 3). A piston-type
wavemaker is located at one end of the flume, and a wave ab-
sorbing zone at the other. Given the origin of the x-axis set at
the beginning of the bar crest, the abscissa of the wavemaker
is —12.36 m.

354

The measuring devices contain four ultrasonic wave probes sss
torecord the FSE, and one Nortek ”Vectrino” acoustic Doppler sse

velocimeter (ADV) to record the velocity at an elevation z, =
—0.05 m below the SWL, giving z, =~ —0.1h; =~ —0.45h,.

357

358

The test with regular waves presented in Section 3.4 of Lawrencese

et al. (2021a) is considered here. In this test, the wave fre-
quency is set as f, = 0.7 Hz (i.e., Ty, = 1.43 s, the cor-
responding wavelength before the bar is L; = 2x/k; =
2.69 m according to the linear wave dispersion relation) and
the wave amplitude H, = 2q; = 0.0270 m. In such a
configuration, the incident wave steepness is €; = kjay =
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Figure 3: Sketch of the bathymetry used in the experiments reported in Lawrence et al. (2021a)

0.032 (or Hy/hy = 0.051) and the relative water depth y; =
kihy = 1237 (or h; /L, = 0.197), resulting in an Ursell

number Ur, = (Hy/h;) (L, /hy)’ = 13.12. Over the bar,
the parameters are then e, = 0.059 (or Hy/h, = 0.246),
U, = 0483 (or hy/L, = 0.077) and Ur, = 41493 >
100. Therefore the relative importance of nonlinearity is
considerably enhanced by the shoal. The wave field near the
wavemaker is of intermediate nonlinearity, yet it results in
highly nonlinear but non-breaking waves over the bar. The
same configuration was tested 31 times, such that the FSE
was measured at 124 positions and the horizontal velocity at
31 positions. The measurements were performed in a suffi-
ciently short time to avoid the effects of reflection at the end
of the flume.

4.2. Numerical model setup

In the numerical flume, the waves are generated and damped

within two relaxation zones of 8 m in length (approximately
3L,) located at both ends of the numerical flume. The effec-
tive computation domain for wave propagation (i.e., exclud-
ing the two relaxation areas) starts at x = —5.5 m and ends
at x = 10.3 m. The governing equations are discretized with
constant space and time step, Ax = 0.04 m and A = 0.02 s,
respectively. Such a choice results in CFL= 0.94 in the
deeper flat regions and CFL= 0.50 over the bar crest. The
polynomial order is set to Ny = 7.

4.3. Free surface elevation

Comparisons of the measured and computed FSE time
profiles are shown in Fig. 4 at 6 positions over a time win-
dow of 3T,. Before the bar (probes #1 and #25), the waves
are nearly symmetric in both the horizontal and vertical di-
rections. As waves propagate over the bar (probes #70 and
#106), the wave profiles become asymmetric, and secondary
crests manifest. These secondary crests are related to the
development of high-order harmonics that propagate with
a different velocity in comparison to the carrier wave. As
waves propagate over the de-shoaling slope (probes #115
and #124), due to the presence of bound and free super-
harmonics (propagating with different velocities) the free sur-
face time profile is very variable from one position to an-
other. It should be noticed that after the de-shoaling slope
(probe #124), the wave profile is asymmetric, with sharper
troughs and flatter crests. The evolution of the wave pro-
file along the flume is very well reproduced by the model,

despite some slight phase shifts at probes #115 and #124.

To better illustrate the evolution of the waves over the
varying bathymetry and to assess the magnitude of nonlinear
effects, a Fourier analysis is applied to both the measured and
simulated time series. Fig. 5(a) shows the spatial evolution
of the amplitudes of the first six harmonics (i.e. wave com-
ponents with frequencies n f, withn = 1, ..., 6), normalized
by the amplitude measured at probe #1, denoted as a,. The
fourth to sixth harmonics are duplicated in Fig. 5(b) with a
reduced range in y-axis to have a better view. The evolution
of the primary component shows some oscillations before
and over the bar, this is expected to be the result of reflection
(by both the ascending and descending slopes). Over the bar
crest, the amplitude of the primary component starts to de-
crease due to the enhancement of the amplitudes of the high-
order super-harmonics. The second harmonic is consider-
ably increased over the bar crest and remains on a high level.
Eventually, the amplitude of this second harmonic becomes
comparable to the primary component over the de-shoaling
slope. The third harmonic is also increased over the bar
with some oscillations, and it decreases over the de-shoaling
slope. The evolution trends of the first three harmonics are
very closely reproduced by the model. In Fig. 5(b), the evo-
lution trend of the fourth to sixth harmonics is similar to that
of the third harmonics and is also well captured by the model.
It is seen that measured results scatter around the simulated
results, this could be explained by the fact that the fourth to
sixth harmonics are of small magnitudes and may be influ-
enced by noise during the measurements.

As shown in Fig. 4, waves become asymmetric in both
vertical and horizontal directions when propagating over the
submerged bar. The magnitudes of the vertical and hori-
zontal asymmetry are measured by the skewness of the FSE
and its Hilbert transform (Elgar and Guza, 1985), A5(s) and
A3(H(n)) (known as asymmetry parameter, with { denoting
the Hilbert transform operator), respectively. The kurtosis is
a measure of the extreme values in a time series: for irregu-
lar waves, it is related to the occurrence probability of freak
waves, and for regular waves, it is still an important index
that characterizes wave nonlinearity. For a normalized ran-
dom variable X with a zero mean and a unit variance, the
skewness, asymmetry and kurtosis parameters are defined
respectively as:

(X)) = (X?), (44)
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Figure 4: Comparison of measured and computed FSE temporal profiles at 6 locations for the nonlinear regular wave
experiment of Lawrence et al. (2021a)
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Figure 5: (a) Spatial evolution of measured and computed normalized amplitudes of the first 6 harmonics of the FSE for the
nonlinear regular wave experiment of Lawrence et al. (2021a). (b) Close-up view of the fourth to sixth harmonics, with a
reduced extent of the vertical axis. The gray areas indicate the extent of the submerged bar.

LHX)] = <H (X)3> , (45) skewness, asymmetry and kurtosis are computed for the av-
_ 4 eraged free surface profile over one wave period. In the lin-
2g(X) = (X*). (46)  ear framework, the skewness and asymmetry of a sinusoidal

wave over one (or multiple) period(s) are 0, while the kurto-
sis is expected to be 1.5. The deviation of these parameters
from their linear expectation is an indication of the magni-

a2 where () denotes a mean operator, X could be normalized
a3 FSE, velocity or acceleration. In this subsection, we take X
sse  as 7. As we are discussing regular waves, in practice, the
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z [m]

Figure 6: Spatial evolution of statistical moments of the measured and computed FSE for the nonlinear regular wave
experiment of Lawrence et al. (2021a). The gray areas indicate the extent of the submerged bar.

tude of nonlinearity.

The evolution of skewness, asymmetry and kurtosis is
shown in Fig. 6. It is observed that in Fig. 6(a), the skewness
is increased over the bar crest, indicating waves with sharper
crests and flatter troughs. It is then significantly decreased
over the de-shoaling area, indicating that deep troughs and
smaller crests develop in the wave profile in this area. In
Fig. 6(b), the evolution of the asymmetry parameter indi-
cates that the wave profile first leans forward then backward,
and eventually restores a symmetric shape in the horizontal
direction. Symmetrical wave profiles in both horizontal and
vertical directions are not recovered after the de-shoaling
zone, at least within the current spatial scale. In Fig. 6(c), the
kurtosis of FSE shows a similar evolution trend as the skew-
ness, it starts to deviate from the linear expectation 1.5 after
the up-slope and increases significantly over the bar crest.
Eventually, the kurtosis does not recover 1.5 after passing
over the down-slope, and remains higher than this linear ex-
pectation instead.

4.4. Orbital wave velocities at z, = —0.05 m
Fig. 7 shows the evolution profiles of u(z,) (zo = —0.05 m)

at the same six positions as in Fig. 4, within again a time
frame of 3T;. In general, the evolution of u(z;) profile is
quite similar to that of #. The main difference between the
evolution of u(z,) and # is that the contribution of the high-
order harmonics is enhanced in the time series of u(z). The
enhancement is proportional to the wave number of high-
order harmonics, and this explains the more pronounced sec-
ondary peaks over and after the submerged bar (at locations
of probes #29 and #30 for instance).

The harmonic analysis is performed for both the mea-
sured and computed horizontal velocity u(z). It is shown
in Fig. 8(a) that the magnitudes and the evolution trends of
u(zg) are reproduced by the model with high accuracy to the
third order. In Fig. 8(b), the measured fourth to sixth-order
harmonics of u(z) are slightly lower than the model predic-
tions. Again, the measured fourth to sixth harmonics show
some oscillations around their mean levels, which could be
related to digital noise. The spatial evolution of skewness,
asymmetry and kurtosis is displayed in Fig. 9. The evolution
trends of these statistical parameters of u(z), in particular
the skewness and asymmetry parameters, are very similar to
those of #, indicating that the shapes of the horizontal veloc-
ity and FSE profiles evolve similarly.

To sum up, the various comparisons confirm the high
accuracy of the W3D model in computing the horizontal ve-
locity beneath nonlinear waves. In contrast, Lawrence et al.
(2021a) indicate that they had to use two different models to
simulate this case, namely a HOS-type model to predict the
FSE field and a variational Boussinesq model to calculate
the velocities in the fluid domain.

4.5. Eulerian wave accelerations at z, = —0.05 m
The horizontal acceleration ax(z) = (du/0t) | 2=z is not
directly available from the measurements. Here, it is es-
timated by computing the time derivative of the measured
u(zg) signal, using a centered FD scheme over a stencil of 5
signal points (similar to eq. (36)). In the model, the accel-
eration is directly evaluated using eq. (25). For comparison,
we also computed it by deriving the simulated u(z) time se-
ries with respect to time, using the same FD scheme as for
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Figure 7: Comparison of measured and computed horizontal velocity u(z,) temporal profiles at 6 locations for the nonlinear
regular wave experiment of Lawrence et al. (2021a).
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Figure 8: (a) Spatial evolution of normalized measured and computed amplitudes of the first 6 harmonics of the horizontal
velocity u(z,) for the nonlinear regular wave experiment of Lawrence et al. (2021a). (b) Close-up view of the fourth to sixth
harmonics, with a reduced extent of the vertical axis. The gray areas indicate the extent of the submerged bar.

the measurements.

In Fig. 10, the time profiles of ax(z,) at 6 locations (same
as in Fig. 7) are shown. In each panel of Fig. 10, the time
profiles of ax(z,) derived from the measured and simulated
u(z() with FD method, and simulated ax(z,) evaluated with
eq. (25) are superimposed. It is seen that the ax(z,) directly

computed with eq. (25) is in good agreement with that calcu-
lated from u(z) with the FD method, thus validating our im-
plementation of the acceleration computation. In the follow-
ing, unless otherwise stated, simulated ax(z,) refers to the
results obtained with eq. (25); measured ax(z) refers to the
acceleration evaluated from the measured u(z,) with the FD
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Figure 9: Spatial evolution of statistical moments of the measured and computed horizontal velocity u(z,) for the nonlinear
regular wave experiment of Lawrence et al. (2021a). The gray areas indicate the extent of the submerged bar.

method. The agreement between the simulated and the mea-
sured ax(z) is fairly good throughout the domain, although
some differences in the magnitude of crests and troughs de-
velop after the up-slope.

The harmonic analysis is performed for both the simu-
lated and measured ax(z,) time series, with the evolution of
the amplitudes of the first six harmonics displayed in Fig. 11.
In Fig. 11(a), it is seen that the agreement between the sim-
ulated and measured results is reasonable. Yet, the second-
order harmonic is overestimated in the simulation starting
around x = 0.5 m, leading to higher crests and deeper troughs
in the simulated ax(z,) time series. It is noted that the am-
plitudes of the super-harmonics (second and higher orders)
are increasing when comparing the spectral evolution of #,
u(zg), and ax(zy) in space. This is the result of the free
super-harmonics excited by the shoal, which produce larger
amplitudes of velocity and acceleration in comparison to the
bound components.

In Fig. 12, the spatial evolution of skewness, asymmetry,
and kurtosis of ax(z,) are shown. It is seen that the simu-
lated results are in very good agreement with the measured
results. The evolution trends of these parameters are evi-
dently different from those for # and u(z,), especially after
the up-slope: the local peak of the skewness appears much
closer to the end of the up-slope, and the asymmetry param-
eter is positive over the bar. It is speculated that the differ-
ences are related to the phase differences between horizontal
acceleration and horizontal velocity. The kurtosis increases
rapidly after the shoal and remains at a high level over the bar
and a short distance over the de-shoaling zone. The evolu-
tion trends of these parameters are in line with the indication

of stronger second- and higher-order harmonics observed in
Fig. 11. It is stressed that the kurtosis after de-shoal is hard
to predict, and the W3D model performs well for that pur-
pose, providing excellent prediction of not only the kurtosis
of FSE but also of the kinematics underneath.

5. Conclusion

In this study, new formulations of the particle kinemat-
ics, namely orbital velocities and accelerations, have been
developed in the FNPF wave model Whispers3D, which uses
a basis of orthogonal Chebyshev polynomials of the first
kind to project the vertical structure of the velocity potential.
With the potential expressed (and approximated) in a poly-
nomial form as given by eq. (8) where the main unknowns
are then the a, coefficients (n = 0,1, ..., N), the expres-
sions of particle kinematics could be derived explicitly. The
estimation of horizontal and vertical velocities involves the
spatial derivation of the potential in the corresponding di-
rection, which can be obtained either analytically or with
the FD method without additional information in the time
domain. However, the estimation of particle accelerations
involves the time derivative of the velocity components. In
the model, this requires the computation of the time deriva-
tives of a,, coefficients, which can be obtained by using either
a backward (in time) FD scheme in the course of the simu-
lation or a centered FD scheme after the completion of the
run. The results shown here are obtained with a four-point
backward FD scheme (i.e. using the value at the current time
plus the ones at the three previous time steps). The accuracy
and efficiency in the computation of the particle kinemat-
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Figure 10: Comparison of the temporal profiles of the horizontal acceleration ax(z,), between the time-derivative of the
measured horizontal velocity and the computed acceleration given by the model at 6 locations for the nonlinear regular wave
experiment of Lawrence et al. (2021a).

3.5 T

Exp. 1st harml)nic
Exp. 2nd harmonic
Exp. 3rd harmonic
Exp. 4th harmonic
Exp. 5th harmonic
Exp. 6th harmonic

Simu. ist harmoni(;
Simu. 2nd harmonic
3+ Simu. 3rd harmonic
Simu. 4th harmonic
Simu. 5th harmonic
25+ Simu. 6th harmonic

X X X X X X

0.5 T

(b)

Simu. 4Tth harmonié: x Ex'p. 4th harrﬁonic
Simu. 5th harmonic ~ x  Exp. 5th harmonic
Simu. 6th harmonic ~ « Exp. 6th harmonic
04r 1

Figure 11: (a) Spatial evolution of normalized measured and computed amplitudes of the first 6 harmonics of the horizontal
acceleration ax(z,) = u,(z,) for the nonlinear regular wave experiment of Lawrence et al. (2021a). (b) Close-up view of the
fourth to sixth harmonics, with a reduced extent of the vertical axis. The gray areas indicate the extent of the submerged bar.

ics are governed by the maximum degree of the Chebyshev
polynomial Ny in eq. (8).

We have then demonstrated the capability and accuracy
of the model to simulate kinematics beneath regular non-
linear wave trains in either uniform or variable water depth

through comparisons with an analytical solution and exper-
imental measurements. In the case of regular waves propa-
gating over a flat bottom, a deep-water (kh = 2x) and nearly-
breaking (ka = 0.40) wave condition is tested. With (17, ¢)
calculated from the SF theory and imposed as initial condi-
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Figure 12: Spatial evolution of statistical moments of the measured and computed horizontal acceleration ax(z;) = u,(z,) for the
nonlinear regular wave experiment of Lawrence et al. (2021a). The gray areas indicate the extent of the submerged bar.

tions on the free surface, the W3D model successfully com-
putes the kinematics in the whole fluid domain beneath the
free surface. The errors of computed FSE, velocities, and
accelerations in comparison to the reference SF solution oc-
cur mainly beneath the wave crest, yet remain very low (be-
low 0.1% for velocities and 1% for the accelerations) with
Np = 11. An even better agreement could be achieved with
a further increase of Ny, at the cost of an additional compu-
tational burden though. In the case of regular waves propa-
gating over an uneven bottom (submerged trapezoidal bar),
the experimental test reported in Lawrence et al. (2021b)
is reproduced with the W3D model. A Fourier analysis of
both measured and simulated times series shows a very good
to excellent agreement between simulated results and mea-
surements achieved for the amplitudes up to the sixth-order
super-harmonics of FSE, velocities, and accelerations. The
spatial evolution trends of statistical parameters describing
wave nonlinearity of the kinematics (skewness, asymmetry,
kurtosis) are also very well described by the model.

As a general conclusion, the W3D model is capable of
computing the kinematics beneath strongly nonlinear waves
very accurately under the framework of potential wave the-
ory. In comparison to other existing models, some advan-
tages of the W3D model can be summarized as follows:

1. It is a single-layer model that can handle nonlinear
waves in a broad range of relative water depth, whereas
a multi-layer approach is often required for higher-
order Boussinesq-type models aiming at a similar range
of application (see e.g. Liu and Fang, 2016; Fang et al.,
2022);

2. With the newly developed compact formulas, namely

eqs. (17)—(18) for the velocity components and egs. (25)—e3a

(26) for the acceleration components, explicit high-
order polynomial expressions are available to compute
the wave-induced kinematics at any point at or below
the free surface.

3. The model is free from any singularity issue when
computing the kinematics throughout the water col-
umn, which is different from other approaches as the
BEM for instance, in which singularities appear for
nodes located at the free surface (see e.g. Lafe et al.,
1980; Wang and Tsay, 2005).

4. It can describe kinematics beneath strongly nonlin-
ear waves with high accuracy. In contrast, tackling
the same question with the HOS modelling framework
can be of larger error close to the free surface, as ob-
served by Lawrence et al. (2021a) for instance, who
had to rely on a two-model approach, namely a HOS
model for simulating the wave field evolution and a
variational Boussinesq model to subsequently com-
pute wave kinematics.

In the companion Part II article (Zhang et al., 2024), we pro-
vide additional validation of the numerical model against ir-
regular wave experiments performed by Trulsen et al. (2020)
in which the same bottom profile as in section 4 was adopted.
The combination of measured and numerically simulated long
time-series of wave kinematics permits studying the statisti-
cal distributions of particle velocities and accelerations, and
proposing and validating a new statistical model of log-normal
type for these kinematics variables.
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