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Abstract 

The need to electrify end uses to achieve carbon neutrality by 2050 and strengthen energy independence means 

that we need to seek out and evaluate the most efficient technologies. To limit these future increases in 

electricity consumption, existing consumptions must also be reduced. Thus, retrofitting direct electric space 

heaters with a heat pump is a dual opportunity to speed up the decarbonization of the French residential sector 

and to moderate both individual and overall electricity demand increase. We then use this case study to evaluate 

a range of evaluation methods. 

To assess the energy savings achieved by the switch from direct electric heating to air-to-air heat pump, in the 

absence of information to set up a control group (difference in difference), we monitored the daily electricity 

consumption of a dwelling, via the existing smart meter during 2 periods: 3 years with direct electric heating 

(DE) before retrofit, and 2 years after the installation of the air-to-air heat pump (HP).  

The daily meteorological data were used to assess the thermal gradient (consumption versus temperature). The 

aim is to capture the heat-sensitive part of the daily consumption (mainly linked to space heating).  

Several methods have been used to estimate energy savings by comparing the before and after situations: Linear, 

quantile and partial least square regressions, Multivariate adaptive regression spline model, and Machine 

learning based on generalized additive model. 

The impact of the energy savings estimated according to the methodology is assessed and the uncertainties that 

may exist within each method and between methods is presented. The conditions of use and advantages of each 

method are discussed as they apply to other smart meter consumption, such as gas and other renovation. 

Introduction 

The context of a strong end-uses electrification in (building and transportation) to reach carbon neutrality in 

2050 (RTE 2024) and to enhance energy independence, leads us to seek after the most efficient technologies to 

minimize energy consumptions. Thus, the European Commission with the REPowerEU plan, “doubled down its 

ambition level by communicating the need to increase annual Heat Pumps (HPs) sales by a factor of 2 over the 

next 5 years” (EHPA, 2022). 

Already, the French market for air-to-water HPs has grown from 96,000 units sold per year to 306,000 units 

between 2018 and 2023. Over the same period, the market for air-to-air heat pumps rose from 573,000 units to 



910,000 units1 sold per year (Uniclima 2024). France is now the first market in Europe for heat pumps (IEA 

2022). France also has many homes heated by Direct Electric (DE) heating (9 million over 30 million) (CEREN 

2023) which could be replaced by air-to-air HPs. 

To moderate for the future national increase in electricity consumption (Thomaßen, et al. 2021), existing 

consumption must also be reduced through insulation and efficient equipment such as HPs. In this context, we 

study the retrofit of a DE-heated dwelling through the implementation of an air-to-air HP after renovation. We 

analyse the overall electricity consumption (daily) thanks to a smart meter over the last 5 years (2018-2023). 

This corresponds to 3 winter seasons with DE space heating and 2 winter seasons with the HP.  

Beyond the results of this case study and thanks to the smart meter deployment (Wang et al. 2019), our aim is to 

study generalisable and automatable methodology for a range of situations to assess the modification of 

consumption (mainly electricity or gas from smart meters). 

CASE STUDY 

We monitored the daily electricity consumption of the dwelling; via the smart meter Linky (Enedis 2022) which 

measures the total electricity delivered to the dwelling, all end-uses combined and a sub-meter for the recent use 

of a Plug-in Hybrid Electric Vehicle (PHEV). It should be noted that in the following text, we refer for 

simplification to HP or DE consumptions as the consumption for all end-uses with the heat pump or direct 

electric as the heating equipment used, unless otherwise specified. 

The case study 

The studied dwelling is a Single-Family Housing (SFH) built in the end of the ‘80s located in the “Ile de France” 

French region (H1a French climatic zone). The typology of this SFH is described by (CSTB, 2022). This house, 

with a living area of about 130 m², was built in the first wave (around 1982-1995) of the development of DE 

space heating in France (Osso and Laurent 2017). Subsequently, renovation works were carried out (roof 

insulation, change of windows) before 2018 (Figure 1).  

 

Figure 1. Chronology of events in the case study. 

Concerning the end-uses, the SFH is a dwelling fully equipped with electricity end-uses (domestic hot water 

with storage, cooking) and well equipped with household appliances (washing machine, fridge, dishwasher, 

tumble dryer, freezer, computer…) and since January 2021 the use of a PHEV with a 12.4 kWh battery (3.7 kW 

on-board charger). The PHEV is plugged into a standard 16 A power supply each day. 

No other notable changes have taken place and we can assume by default that usage behaviour has not 

drastically changed either. The room-by-room management of space heating by the occupant has not drastically 

changed, with the heating switched off in summer (and the HP switched to air-conditioning mode in the event of 

a heatwave). However, as the indoor temperature was not measured, it is impossible to assess the potential 

rebound effect that would reduce energy savings.  

In the case of a large-scale analysis of daily consumption, and in the absence of a detailed household survey, it 

will be difficult to separate out all these effects. Nevertheless, it is still possible to measure actual energy savings 

including any undeclared changes, but it is not possible to estimate the performance of equipment. The question 

that then arises is whether changes in occupancy or behaviour are systematically associated with retrofit or 

whether this remains marginal.  

Space heating equipment 

The SFH was initially heated using DE heaters. A multi-split air-to-air HP equipment was installed in May 2021, 

but electric towel warmers remain in the bathrooms. According to the manufacturer's brochure, the 2 installed 

external units have a SCOP2 of 4.7, and a SEER2 of 7.9 with thermal power from 3 to 9.2 kW (8 kW in cooling 

mode). The external unit has a nominal electric power of 2.03 kW in heating mode (min=0.7 kW, max=3.06 kW) 

and 1.98 kW in cooling mode. The HP replaces a total DE installed power of 12 kW. 

Electricity consumption 

 
1 Number of external unit. Multi-splits represent 32% of the total. 
2 SCOP: Seasonal Coefficient of Performance, SEER: Seasonal Energy Efficiency Ratio. 



The daily electricity consumption (all end-uses) is measured thanks to the smart meter from June 2018 to August 

2023 (Figure 2). It should be noted that in this study we are using real climate consumption data (without climate 

correction). 

 

Figure 2. Electric daily consumption (kWh), all end-uses. DE: direct electric, HP: heat pump.  

In addition, the load of the PHEV has been monitored via a dedicated sub-meter since August 2022. The 

measured data are the active instantaneous powers at 6-second intervals. They are processed by Python scripts 

(Binet et al. 2021). For information, the consumption of the PHEV measured over 12 months (between August 

2022 and August 2023) is 2,290 kWh which includes vehicle preconditioning during the cold season. This 

consumption is included in the daily consumption from the smart meter since January 2021. 

Meteorological data 

We used the nearest weather station to the SFH (Meteostat 2022) as a reference, which is located around 20 km 

from the site. The relative humidity (RH) is provided by (Historique Météo 2023) but for another location (15 

km from the site) as (Meteostat 2022) is not providing RH. The lowest average daily temperature (𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑑 ) 

is -3.8°C and the highest 31.9°C and an average temperature of 12.6°C (Table 1, grey row). The Figure 3 

presents the distribution of explanatory variable values at our disposal.  

 

Figure 3. Distribution of explanatory variable values (from 2018-06-21 to 2023-08-28). 

Table 1. Observed variables and sources. 

Variable min max median mean Unit Source Code 

Date 2018-06-21 2023-08-28 - - Day  d 

Daily consumption (all end-uses) 7.00 168.00 33.00 40.71 kWh Smart meter C 

Average outside temperature -3.85 31.93 12.20 12.67 °C MeteoStat T 

Relative humidity 33.00 100.00 85.00 83.44 % Historique Météo RH 

Wind speed 0.00 44.32 12.08 13.29 km/h MeteoStat WS 



Wind direction 0.00 359.0 197.1 184.1 degree MeteoStat WD 

Atmospheric pressure 976.5 1045.2 1017.7 1017.4 hPa MeteoStat P 

Methodology 

In this study, our methodology is based on 3 stages: 

• Isolation of the days when space heating is active (non-heating temperature) (§ tipping points). 

• Modelling of the reference situation (i.e. DE heating consumption) using different statistical models (§ 

modelling the reference situation). 

• Estimation of energy savings by comparing the modelled situation with observed consumption (§energy 

savings assessment). 

Other possibilities were considered for estimating energy savings. A simple comparison at the same average 

outside temperature between the 2 situations and the creation of 2 models (DE and HP). A simple comparison at 

the same temperature is not very relevant because daily consumption depends on the average temperatures of the 

previous days. The use of 2 models poses a problem because the HP model has a much lower explanatory power 

than the DE model due to the much lower heating consumption, which has less influence on daily consumption 

for all uses and potentially larger confident interval. Finally, direct modelling of energy savings along the whole 

metered period is also possible by including the effect of HP use as a qualitative variable in a quanti-quali type 

model. 

Tipping points 

Daily consumption as a function of outside temperature (Figure 4) enables us to determine several key values: 

daily consumption gradient, base consumption (non-thermosensitive) and non-heating temperature. To estimate 

the non-heating temperature (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), we used an optimized linear regression of the daily consumption 

𝐶𝑑 explained by the average outside temperature of the day and the previous 2 days: 

𝐶𝑑 = 𝛽0 + 𝛽1 ∗ 𝑇𝑑 + 𝛽2 ∗ 𝑇𝑑−1 + 𝛽3 ∗ 𝑇𝑑−2 + 𝜀  𝑤𝑖𝑡ℎ 𝑇𝑑 <  𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  eq.1 

The 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is chosen to provide the best goodness of fit (i.e., maximum R²) using a Monte-Carlo procedure 

(𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) = [14:22]) (Leschinski 2019) of a linear modelling using lm function (R Core Team 2023). To 

calculate this temperature, we only use the outside temperature, as this is the most important variable (Figure 7). 

This non-heating temperature (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is used to filter the data so that only consumption dependent on the 

outside temperature is modelled in this study. 

 

Figure 4. Schematic representation of the daily consumption gradients (all end-uses), non-heating temperature 

(𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and cooling temperature (tipping points). 

Modelling the reference situation 

If we refer to the IPMVP's (International Performance Measurement and Verification Protocol) methods of 

measurement and verification (M&V), to calculate energy savings, we are in the framework of option C (whole 

facility) based on smart meter data (EVO 2018). Energy savings are assessed based on before and after situation, 

with an adjusted baseline assessing what would have happened if the energy efficiency measure had not been 

introduced (reference situation). 

Several methods have been used to estimate energy savings by modelling the before situation based on a general 

framework of regression modelling based on various predictors as we supposed (Genuer et al. 2008): 

Y = s(Xi) + ε eq.2 



with Y: variable of interest (numerical response), Xi: explanatory variables (predictors), 

s: regression function, ε: error term. 

Currently, a range of more or less complex methods are readily available and usable beyond the simplest linear 

regression model. In this study, we test a set of methods to determine whether one method is particularly more 

efficient than the others. Certain methods used in this study are now commonly used to forecast the electrical 

load curve, readers are invited to refer to (Hong and Fan 2016, Wang et al. 2019) for a full overview of the 

methods used. We should note that a time frame of more than 1 year correspond to long term forecasting (Hong 

and Fan 2016). According to (Hong and Fan 2016), models can be classified according to different categories:  

• non- interpretable model (black box) vs. interpretable models (white box), 

•  univariate models (no explanatory variables) vs. multivariate models (using weather information).  

Complex methods (including use of different algorithms) are also used to forecast consumption and to identify 

the most important drivers (Jiao et al. 2022). Artificial Neural Network are also used (Sarmas et al. 2022). It 

should be borne in mind that forecasting methods based on sensor data within the building, like in (Edwards et 

al. 2012), are outside the scope of this study. 

The 11 methods used in this study are: 

• Linear regression (ordinary least square - OLS) (R Core Team 2023) which minimizes the sum of the 

squared error by finding the coefficients of a linear equation. 

• Quantile Regression (QR) of median value (i.e. τ = 0.5) (Koenker 2022). The quantile regression allows the 

coefficients to differ from one quantile to another. Compared to modelling the mean (OLS), QR is more 

appropriate in the presence of extreme values (outliers) or when the distribution of the variable of interest is 

very spread out (Givord and D'Haultfœuille 2013).  

• Partial Least Square Regression (PLSR) (Liland et al. 2023). PLS regression was designed to accommodate 

collinearity between linearly dependent explanatory variables (Mevik and Wehrens 2023), this is 

particularly the case for the temperature variable from one day to another or other weather variables. 

• Enhanced Adaptive Regression Through Hinges (EARTH) (Milborrow 2023). Non-parametric regression 

model based on the Multivariate Adaptive Regression Splines in (Friedman 1991) combining recursive 

partitioning and spline fitting.  

• Support Vector Machine (SVM) (Meyer et al. 2023). Regression with kernel-based learning methods using 

hyperplane that minimizes the deviation of data points from the predicted values (Smola and Scholkopf 

2004). 

• Random Forest (RF) (Liaw and Wiener 2002). The principle of random forests is to combine independent 

decision trees built using several bootstrap samples and choosing randomly at each node a subset of 

explanatory variables. The final prediction is the average of these individual tree predictions with no 

consideration for the errors of other trees (Genuer et al. 2008).  

• Extreme Gradient Boosting (XGBoost) (Chen et al. 2023). A sequence of decision trees, with each new tree 

correcting the errors made by the previous ones. At the contrary to RF each subsequent tree focusing on 

correcting the mistakes of the ensemble up to that point (Chen and Guestrin 2016).  

• Generalized Additive Models (GAM) (Hastie 2023). Models using unspecified multiple smooth additive 

functions (Hastie and Tibshirani 1990). 

• Quantile GAM (qGAM) (Fasiolo et al. 2021). Fitting additive quantile regression models based on splines 

(Fasiolo et al. 2020). 

• Prophet (Taylor and Letham 2021). A time series forecasting model with explanatory variables and 3 mains 

component: trend, seasonality weekly, yearly and holidays like a generalized additive model (Taylor and 

Letham 2018). It should be noted that only this model models consumption by taking time into account 

(date as explanatory variable). 

• Staking model (Superlearner) (Poley et al. 2021). A generalized stacking ensemble learning technique 

estimating the performance of multiple models creating an optimal weighted average of those models and 

finds the combination of algorithms minimizing the cross-validated risk (Poley and van der Laan 2010). 

To produce the models, we attempt to explain daily consumption (𝐶𝑑
𝐷𝐸) using DE space heating, as a function of 

the following explanatory variables: 

• Td, Td-1, Td-2: average external temperature for days d, d-1 and d-2 to consider inertia. 

• Tmin, Tmax: to consider extrema in temperature during the day d. 

• WS and WD: effect of the wind (speed and direction) linked to the permeability of the dwelling. 



• RH: relative humidity. 

• P: atmospheric pressure. 

We must notice that T, P and RH are slightly correlated and Td, Tmin and Tmax are highly correlated (Figure 5). 

 

Figure 5. Correlation analysis of explanatory variables. 

To train and to evaluate models, we use a training sample (80% of the data by random selection) and the 

complementary test sample (20%). The variables between the two samples are presented in Table 2 and show 

similar values. It should be noted that the link between temperature and time is not completely broken by the 

random sampling because we integrate the outdoor temperature over 2 days backwards as variables. 

To estimate the performance of the models on the test sample, we use the Mean Absolute Percentage Error 

(MAPE), the MAE (Mean Absolute Error) and the Root Mean Squared Error (RMSE) supplemented by the R-

Squared (Coefficient of Determination) regression Score (R²) as calculated by (Yan 2022).  

Table 2. Train and test samples of the before situation (with Td < Tthreshold) 

Sample Train Test 
Unit Code 

Variable min median mean max min median mean max 

Daily consumption 7.00 55.00 56.45 168.00 8.00 55.00 55.39 165.00 Day C 

External temperature -3.85 9.304 9.117 16.96 -3.408 9.467 9.229 16.946 kWh T 

Relative humidity 49.0 87.0 85.4 100.0 49.0 86.0 85.5 98.0 % RH 

Wind Speed 2.717 12.915 14.277 41.80 3.408 14.050 15.996 44.317 km/h WS 

Wind Direction 23.91 195.21 186.45 346.67 27.92 205.42 194.41 343.75 degree WD 

Atmospheric pressure 976.5 1018 1016.9 1045.2 985.2 1016.9 1017.2 1040.7 hPa P 

Energy savings assessment 

Energy savings (ES) are calculated by comparing observed consumption (𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐻𝑃 ) (all end uses) from the 

smart meter with that modelled from the previous situation (i.e. the modelled consumption (𝐶𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑
𝐷𝐸 ), if the DE 

heating were still in use (reference situation)), based on actual data for the observed period (2021-06 to 2023-

08): 

𝐸𝑆 = ∑ 𝐶𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑
𝐷�̂�

𝑑 − ∑ 𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐻𝑃

𝑑 =  ∑ (𝐶𝑑
𝐷�̂� − 𝐶𝑑

𝐻𝑃) =𝑑 ∑ ([s(𝑋𝑖
𝑑)  +  ε] − 𝐶𝑑

𝐻𝑃)𝑑  eq.3 

In this study, we simply calculate the energy savings between a modelled situation and a real situation, but it 

would be possible for future work to directly produce a model of energy savings as a function of the explanatory 

variables analysed. 

We have assessed the uncertainty associated with the ES estimate by calculating confidence intervals associated 

with this estimate. The 95% confidence interval is represented by the 2.5% and 97.5% level empirical quantiles 

of a set of M = 1,000,000 energy savings simulations. Each simulation j = 1 ... M is calculated as the sum of the 

daily savings simulations (i.e. 700 days from 2021-06 to 2023-08 with Td < 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), assuming independence 



from one day to the next. Each daily savings simulation is carried out by a random sampling based on the 

inversion of the empirical distribution function provided by the EARTH method. 

Results 

Metered consumption and daily consumption gradient 

Figure 6 shows the daily consumption as a function of the outdoor temperature and clearly demonstrates the 

difference in slope for the thermal gradient between the before and after situations. The non-heating temperature 

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  with DE space heating is estimated at 16.96°C (R²=0.84). The use of data filtering according to the 

non-heating temperature estimated by a simple linear regression model (eq.1) may be questionable as we are 

using more complex models capable of handling strong inflections. The decision to keep the filtering is based on 

the idea of comparing models, some of which (e.g. OLS, QR) are not capable of handling these inflections. 

The baseline consumption (i.e. with Td > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) in the before situation is on average 17 kWh/day with a 

standard deviation of 7 kWh (min = 7 kWh, max=49 kWh).  

 

Figure 6. Daily consumption (kWh, all end-uses) depending on the average outdoor temperature (Td in °C) and 

the type of space heating equipment (circle: DE, triangle: HP) over the metered period (2018-06 to 2023-08).  

Average daily consumption changes after installation of the HP as well as the standard deviation is lower after 

the installation of the HP compared to the previous situation with direct electric heating (Table 3). 

Table 3. Daily electric consumption (all end-uses). Q1, Q3: 1st and 3rd quartile, sd: standard deviation 

situation min Q1 median mean Q3 max sd 

DE 7 20 38 46 68 168 30.2 

HP 8 23 32 34 44 78 15.2 

Models’ performance 

The performance of the models calculated is presented in order of performance in Table 4 using all the 

explanatory variables. As a result, the models are not optimised by the choice of significant explanatory 

variables (which could be endogenous for some model) and can affect their performance. But this is a 

methodological approach to automated data processing. All models are run using the default parameters. It can 

be noted that the RMSE of the OLS model based solely on temperature over 3 days and that with all the 

variables are respectively 12.11 kWh and 11.52 kWh (R²=0.824 vs. R²=0.847). The choice of a simple model is 

open to discussion. 

We should also note that the ranking of the models depends on the choice of the non-heating temperature. Here, 

as we have an approach based on linear regression, this does not give any particular advantage to models capable 

of handling inflections. 

According to MAPE, MAE and RMSE, with the exception of Prophet, whose results are slightly better in terms 

of RMSE and R², the best performing model is the EARTH model followed by qGAM and SVM. However, the 

difference in performance between these models remains small for all models (<10% compared to the lowest 

MAPE), except for OLS and QR (>20%). It should be noted that some performing models are not explanatory 

models (SuperLearner, RF). The simple and explanatory models (OLS, QR) performed the worst.  



We should note that, as noted by (Hong and Fan 2016), model performance is highly data dependent, and it is 

difficult to conclude that one model is generally superior to another. The importance of this last point in 

assessing energy savings will be discussed later. 

In addition, depending on the choice of the non-heating temperature, the performance of certain models changes 

because some are better able to deal with discontinuities. Our method of determining the temperature limits 

discontinuities by construction. 

Table 4. performance of models (on sample test) ranked by increasing MAPE and increasing RMSE. 

Model MAPE RMSE MAE R² Type of model 

Earth 0.197 10.057 7.880 0.879 interpretable 

SVM 0.199 10.867 8.883 0.858 non-interpretable 

qGAM 0.200 10.058 7.884 0.879 interpretable 

RF 0.204 10.456 8.043 0.869 non-interpretable 

GAM 0.205 10.235 8.064 0.874 interpretable 

Superlearner 0.209 10.325 8.883 0.872 non-interpretable 

XGBoost 0.210 10.927 8.606 0.857 non-interpretable 

Prophet 0.211 10.009 8.045 0.880 interpretable 

PLSR 0.233 11.286 8.560 0.847 interpretable 

OLS 0.240 11.308 8.749 0.847 interpretable 

QR 0.244 11.519 8.823 0.841 interpretable 

It should be noted that some models are better at handling extreme values, such as GAM (Table 5). Some models 

give minimum values that are too low (PLSR, OLS, QR, deviation >50%). For maximum values, the differences 

are much smaller (<20%) for all models. This shows the complexity of considering the transition from 

temperature-sensitive consumption to non-sensitive consumption and very low-consumption due to absence 

from home (Figure 3). 

Table 5. Analysis of the consumption 𝑪𝒅
𝑫𝑬 (in kWh/day) predicted by the models based on the test sample.  

Model min 1st Quartile median mean 3rd Quartile max 

Test sample 8.00 28.50 55.00 55.90 79.50 165.00 

Earth 12.80 31.33 54.27 55.33 75.41 137.10 

SVM 13.50 32.23 53.12 55.73 75.98 147.12 

qGAM 11.43 31.88 53.39 55.86 76.52 145.08 

RF 15.75 33.57 53.66 55.70 75.33 146.94 

GAM 12.32 37.76 53.69 55.90 76.14 151.24 

Superlearner 10.53 33.67 53.53 55.91 76.19 148.19 

XGBoost 12.75 30.07 53.26 53.57 72.68 132.81 

Prophet 6.63 37.01 55.83 55.64 74.82 133.18 

PLSR -2.33 37.84 55.20 55.84 75.77 133.18 

OLS 2.09 29.14 57.20 54.18 74.75 129.14 

QR 1.81 37.309 55.80 56.24 75.99 136.22 

In the following sections, we detailed the best performing model by presenting interesting outputs and issues 

encountered. The EARTH model is based on using hinge function (Milborrow 2023): 

𝑓(𝑥) = ∑ 𝑎𝑖[±(𝑋𝑖 − 𝑐)]+
𝑘
𝑖=1 + 𝑏 +  𝜖𝑖 eq.4 

 

with: c: knot, b: intercept, ai: coefficients 

The EARTH model considers 8 variables out of 9 (Tmin is considered by the model as a non-significant variable 

like in many models used in this study). The importance of the variables is as follows: Td, Tmax, Td-2, WS, Td-1, P, 

WD, RH. The effect of the significant variables of the outcome of EARTH model is presented in Figure 7. One 

of the important interests of the earth model (appendix) is that it is interpretable and relies on simple linear 

regressions. Nevertheless, a physical interpretation of the effect of the variables on consumption remains to be 

done in certain cases. 



Note that if we consider only outdoor temperatures for 3 days as explanatory variables, the EARTH model 

performs similarly than the worst model (RMSE=11.669, MAE= 8.718, MAPE=0.209 and R² =0.837).

 

Figure 7. plots for each variable included in EARTH model. The x-axis contains the explanatory variable values, 

and the y-axis contains the effect on the consumption values (in kWh/day) (calculations according to 

(Milborrow 2022)). Bottom-right residual vs. fitted values according to (Milborrow 2023). 

Assessment of energy savings and discussion 

Observed consumption (from 2021-06 to 2023-08) for the period following the installation of the HP was 

20,597 kWh including all end-uses and the PHEV consumption (Figure 8). Using the values of the explanatory 

variables, the models calculated a reference consumption (as it was in the before situation) and estimated the 

gross energy savings by comparison based on equation 3 (Table 7). The net energy savings should be higher if 

the consumption of the PHEV is deducted over the period. Moreover, the ES should be reduced if the potential 

air-conditioning consumption in summer is added (specific to our case study which installs a reversible HP) by 

taking into account the period with Td > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . 

 

Figure 8. daily consumption (kWh/day, all end-uses) following HP implementation (black hollow: predicted DE 

consumption according to EARTH model, full red: observed consumption with HP, pale blue: prediction interval 

[5%-95%]). Absence of data for days with Td > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . 

Despite significant models’ performance differences: MAPE ranging from 2% to 36% compared to the best 

model, the impact on the estimated gross energy savings remains low (<5%) if we also take the best model 

(EARTH) as the reference. In addition, there does not appear to be any link between MAPE or RMSE values and 

estimation values. 

Table 7. Estimated energy savings (in kWh from 2021-06 to 2023-08, see Figure 9) based on the different 

models. 



Model Gross energy savings (kWh) Deviation from the best model 

EARTH 8,109 (±480) Reference (Ref. ±6%) 

SVM 8,036 -0.90% 

qGAM 7,840 -3.32% 

RF 8,162 0.66% 

GAM 7,985 -1.52% 

Superlearner 8,077 -0.39% 

XGBoost 7,996 -1.39% 

Prophet 8,237 1.58% 

PLSR 7,831 -3.43% 

OLS 8,079 -0.37% 

QR 8,026 -1.02% 

We note that the estimated gross energy savings of the different models (from -3.3% to 1.6% compared to 

EARTH result) (Table 7) remains within the uncertainty of the EARTH model calculation (±6%) (Figure 9) 

indicating an insignificant difference between the different results. 

 

Figure 9. Distribution of the gross energy savings estimated with the model EARTH using uncertainty 

calculation (M=1,000,000) (mean = 8,109 kWh, [5%: 7,533 kWh - 95%: 8,478 kWh]). 

In conclusion, even with relatively simple models, and not necessarily the best performing ones, it is possible to 

estimate gross energy savings from daily consumption (due to large error compensation). In addition, the quality 

of some models may be questionable as they do not always meet the necessary criteria (heteroscedasticity, 

variance inflation factor, etc.). The choice of a model with no strong theoretical constraints is therefore an 

interesting one. 

However, estimating net energy savings remains complex without information on changes in other consumption 

(PHEV in our case study and air conditioning) or behaviour. To correctly estimate the net energy savings, we 

need to look at the outdoor temperature sensitivity of the PHEV's consumption, due in particular to pre-

conditioning, the use of the vehicle's heating system and variations in battery capacity. This will be the subject of 

future developments. 

Conclusion 

In this study, we used a case study to test different methods of estimating energy savings based on daily 

consumption of all end-uses from a smart meter before and after renovation (i.e. installation of a heat pump). 

While we are aware that no general conclusions can be drawn from this case study, it does provide a basis for 

considering the feasibility of deploying it on a wider scale to assess the potential of energy savings. 

The algorithms used vary in performance but, as we are aggregating daily consumption over a long period (at 

least 1 year), these differences in performance are not reflected in the estimated gross energy savings due to error 

compensation. The major problem does not therefore lie in the choice of the algorithm. 

The approach developed in this study applies notably to both electricity and gas consumption (i.e. daily 

consumption from a smart meter). In addition, it should be noted that in the case of gas consumption, the outside 

temperature sensitivity of the overall consumption is greater because the smart meter only measures 3 end-uses 

at best (space heating, DHW, cooking) and does not include appliances on the contrary of electricity. The higher 

the proportion of measured consumption accounted for by space heating, the more efficient the models. This 

suggests that small-scale retrofit on heating consumption (e.g. installation of double-glazed windows) would be 

more difficult to estimate. 



The use of data consumption from smart meters raises questions about how to process it to estimate the net 

energy savings from gross savings. Numerous factors/biases are likely to modify the net savings compared to the 

gross savings (before/after situation): rebound effect, modification of the initial situation after renovation both in 

terms of the building (e.g. extension of space area like converted attic, new end-use like in our case study PHEV) 

and the household (e.g. number of people, time spent using the home). One approach to addressing this question 

would be to analyse the evolutions of basic (non-thermosensitive) consumption. 

The case-by-case approach is therefore difficult to apply in a residential context and a good estimate of energy 

savings from smart meter data remains complex. A panel approach seems preferable to reduce the uncertainties 

associated with unknown changes. Thus, a large panel should make it possible to obtain energy savings 

evaluation that is as close as possible to the actual energy savings calculated using a statistically representative 

panel based on data from smart meters and field surveys. 
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Appendix 

EARTH model of the daily consumption (all end-uses, Td<Tthreshold) in the before situation (DE space 

heating). Selected 14 of 19 terms (additive model), and 8 of 9 predictors.  

Hinge (variable) coefficients Hinge (variable) coefficients 

(Intercept) 11.2492178 h(Td-2 - -0.0458333) 9.1524809 

h(14.1417 - Td) 3.0373880 h(1.95 - Td-2) 6.8835855 

h(RH - 87) 0.4560831 h(Td-2  - 1.95) -10.1428098 

h(15.3958 - WS) -0.5633174 h(Pression - 1005.59) 0.2474842 

h(WS - 15.3958) 0.7640152 h(Pression - 1030.54)   0.6989871 

h(16.8 - Tmax) 1.7121654 h(WD - 286.25) -0.1805410 

h(Tmax - 16.8) 1.0648267 h(Pression - 1005.59) 0.2474842 

h(14.5792 - Td-1) 1.1503995   

 


