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ABSTRACT 

With the objective of better answering marine and coastal engineering needs, sea state databases are created 

by hindcast simulations over long periods. The wave hindcast ANEMOC-3 database, built using the spectral 

model TOMAWAC for wave generation and propagation and the hydrodynamic circulation model 

TELEMAC-2D for tidal water levels and currents calculation, covers a period of 45 years from 1979 to 2023. 

During the calibration of the database, the numerical results must be consistent with past observational data 

(in situ or satellite measurements). Among other things, this process relies on calibration to determine 

“empirical adequacy” (Oreskes et al., 1994). In particular, the calibration aims at simulating a series of 

reference events by adjusting some uncertain physically-based model parameters until the agreement with 

available data reaches a satisfactory level. The objective of this work is to implement an efficient calibration 

algorithm, capable of processing measurements optimally, and of estimating the partially known parameters 

in the numerical model. 

1. Introduction 

Many problems in science and engineering require the estimation of unknown or uncertain model’s parameters 

that will produce a solution that best fits a finite set of measurements. The modelling of marine flows and 

waves is no exception. Hindcast wave databases are sophisticated computer-based simulations providing 

complete time series of wave parameters and/or full wave spectra with a fine spatial resolution. They are 

powerful tools for a range of applications, including marine engineering, coastal infrastructure design, offshore 

operations, wave power assessment and environmental studies. By providing a detailed understanding of past 

sea states over several decades, they help researchers and professionals make informed decisions and 

predictions related to ocean environments and their impact on various activities. In this framework, EDF R&D 

LNHE together with the Cerema developed the hindcast wave database ANEMOC about 16 years ago with 

the main interest devoted to the French coastal areas of the Atlantic Ocean, English Channel and North Sea 

(Benoit et al., 2008). With the significant advances in the means of observing continental waters, the ability to 

exchange data as computational results has become a growing need. Data assimilation algorithms for 

integrating observation data into real cases are now increasingly applied to hydraulic problems with two main 

objectives: optimizing model parameters and improving hydraulic and wave simulations and forecasting. The 

objective of this work is to implement an efficient calibration algorithm, based on data assimilation, to best 

estimate partially known parameters of the source and sink terms in the wave model (namely wind generation 

and white-capping dissipation coefficients). 

This paper is organized as follows. Section 2 deals with the methods used in this work. Since it is essential to 

understand, in depth, the relationship between the calibration of modelling parameters and the simulated sea 

state variables which are compared to the observations, a sensitivity analysis is associated to define the 

parameters to be calibrated, which is also subject of Section 2. Section 3 includes a description of the hindcast 

wave database ANEMOC. Section 4 presents the results. Section 5 offers some conclusions and outlooks. 

 

 



2. Materials and methods 

2.1. Optimal Calibration using variational data assimilation 3D-VAR 

The inverse problem of calibration can be understood as the computation of the posterior distribution 𝜋(𝐗|𝐘), 

where model parameters constitute the p-components of the parameter control vector 𝐗 = (𝑋1, … , 𝑋𝑝) ∈ ℝ
𝑝 

composed of independent variables defined on some probability space, 𝐘 ∈ ℝ𝑚 is the observation vector, also 

defined on a probability space, around the unknown parameter vector 𝐗 ∈ ℝ𝑝 and ℝ𝑚 the observation space 

is defined as: 

𝐘 = 𝐺(𝐗) + 𝜖𝑜    (1) 

where 𝐺:ℝ𝑝 ⟶ℝ𝑚 is a vector-valued function of vector 𝐗 and 𝜖𝑜 ∈ ℝ
𝑚 is an observable measurement noise 

such as 𝔼(𝜖𝑜) = 0 and ℛ = 𝑐𝑜𝑣(𝜖𝑜) = 𝔼(𝜖𝑜𝜖𝑜
𝑇) ∈ ℝ𝑚×𝑚, and identified as a multivariate normal 

distribution, 𝜖𝑜 ∼ 𝒩(0,ℛ).  

The posterior distribution 𝜋(𝐗|𝐘) can be determined through the well-known Bayes rule: 

𝜋(𝐗|𝐘) ∝ ℒ(𝐘|𝐗)𝜋(𝐗)    (2) 

The term ℒ(𝐘|𝐗), called the likelihood, can be interpreted as the probability density function of the observed 

data, conditional upon a set of parameter values (considered as random variables), and as a measure of the 

information provided by the observations on the parameter values. From Eq. (1), the likelihood is expressed 

as ℒ(𝐘|𝐗) ∝ 𝑒𝑥𝑝 (−
1

2
(𝐘 − 𝐺(𝐗))ℛ−1(𝐘 − 𝐺(𝐗))

𝑇
). 

The term 𝜋(𝐗) represents a priori knowledge of the unknown parameters 𝐗. This term is classically taken as 

a multivariate normal distribution with known mean 𝐗0 (derived from measurement data or previous 

computation) and covariance matrix ℬ ∈ ℝ𝑝×𝑝 positive definite such as 𝜋(𝐗) ∝ 𝑒𝑥𝑝 (−
1

2
(𝐗 − 𝐗0)ℬ

−1(𝐗 −

𝐗0)
𝑇). From the previous expressions of a priori and likelihood terms, the posterior distribution is given by 

the following equation: 

𝜋(𝐗|𝐘) ∝ exp (−
1

2
[(𝐘 − G(𝐗))ℛ−1(𝐘 − G(𝐗))

T
+ (𝐗 − 𝐗0)ℬ

−1(𝐗 − 𝐗0)
T])                          (3) 

The maximum a posteriori (MAP) is equivalent to the formulation of the optimal search of control vector 𝐗, 

which must satisfy the a priori error statistics 𝐽𝑏 =
1

2
(𝐗 − 𝐗𝟎)ℬ

−1(𝐗 − 𝐗𝟎)
𝑇 and the equivalent observation 

error statistics 𝐽𝑜 =
1

2
[(𝐘 − G(𝐗))ℛ−1(𝐘 − G(𝐗))

T
+ (𝐗 − 𝐗0)ℬ

−1(𝐗 − 𝐗0)
T]. This is known as the 

traditional variational data assimilation cost function, called 3D-VAR (Carrassi et al., 2018).  

Mathematical methods can be used to solve optimization problems. The former can vary significantly 

according to the form of the cost function (convex, quadratic, nonlinear, etc.), its regularity, and the dimension 

of the space. Many deterministic optimization methods are known as gradient descent methods, among which 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method used in this work. The chosen 

optimization method involves computing the adjoint of the observation operator  G (or the partial derivatives 

of the operator with respect to its input parameters). In this work, the partial derivatives are approximated using 

a classical finite difference method. As the inverse problem is defined, a relevant question is: what are the 

effects of the modelling calibration parameters 𝐗 on the simulated sea state variables G(𝐗) which are compared 

to the observations? This question can be addressed by a sensitivity analysis. 

2.2. Sensitivity analysis 

The sensitivity analysis aims at quantifying the impact of uncertainty in input parameters on the accuracy of 

the model output variables. Conventional approaches to Global Sensitivity Analysis (GSA) imply the 

stochastic estimation of statistical moments. The variance-based methods aim at decomposing the variance of 

the output. The sensitivity analysis intends to quantify the relative importance of each input parameter of a 

model to the model output variance. Generally, these techniques compute sensitivity indices called Sobol’ 

indices (Sobol’, 1993). The definition of the Sobol sensitivity indices is a result of the ANOVA (Analysis Of 

VAriance) variance decomposition constructed on the hypothesis that the input variables are independent and 

the model is a square-integrable function of the input parameters. The ANOVA variance decomposition is 

given by the following equation: 



{
 
 

 
 𝑉𝑎𝑟[𝐺(𝐗)] = ∑ 𝑉𝑖(𝐺(𝐗))

𝑝
𝑖=1 + ∑ 𝑉𝑖𝑗(𝐺(𝐗))𝑖<𝑗 +⋯+ 𝑉12…𝑃(𝐺(𝐗))

𝑉𝑖(𝐺(𝐗)) = 𝑉𝑎𝑟[𝔼(𝐺(𝐗)|𝑋𝑖)]

𝑉𝑖𝑗(𝐺(𝐗)) = 𝑉𝑎𝑟[𝔼(𝐺(𝐗)|𝑋𝑖, 𝑋𝑗)] − 𝑉𝑖(𝑌) − 𝑉𝑗(𝑌)
…

    (4) 

The term 𝔼(𝐺(𝐗)|𝑋𝑖) represents the conditional expectation of the output 𝐺(𝐗) under the assumption that the 

uncertain variable 𝑋𝑖 remains constant. From the resulting decomposition of the variance, the first order 𝑆𝑖 and 

the total 𝑆𝑇𝑖 Sobol sensitivity indices are defined by: 

{
𝑆𝑖 = 𝑉𝑎𝑟(𝔼[𝐺(𝐗)|𝑋𝑖]) 𝑉𝑎𝑟(𝐺(𝐗))⁄

 𝑆𝑇𝑖 = 𝑉𝑎𝑟(𝔼[𝐺(𝐗)|𝑋−𝑖]) 𝑉𝑎𝑟(𝐺(𝐗))⁄
    (5) 

where 𝑋−𝑖 refers to the set of uncertain input factors excluding 𝑋𝑖. 

In this work, a polynomial chaos expansion has been carried out to estimate Sobol’s sensitivity indices (Sudret, 

2008). 

3. Application to ANEMOC hindcast wave numerical database 

The hindcast database ANEMOC (in French "Atlas Numérique d’Etats de Mer Océaniques et Côtiers) is built 

from numerical simulations and provides sea state conditions over different geographic domains. The subject 

of the present work is the ANEMOC-3 version built over the Atlantic Ocean, English Channel and North Sea 

French coast covering the period from 1979 to 2023. It is built with the help of two nested meshes (Fig. 1). 

The first mesh, called “oceanic”, covers the whole Atlantic Ocean. It has a relatively coarse spatial resolution 

with a minimum element size of approximately 20 km along the European coastline. Its main purpose is to 

compute wave generation and propagation for providing boundary conditions to the other (finer) mesh, called 

the “coastal” mesh. This latter one has an element size of under 1 km along the French coastline. Only the 

oceanic mesh is subject of the present work. 

  

 

Fig. 1. ANEMOC-3 oceanic (left panel) and coastal (right panel) domains. 

Raoult et al. (2018) included tidal water levels and currents effects on the wave propagation over the coastal 

domain of ANEMOC-3. In order to do so, chained simulations were used aligning the hydrodynamic 2D 

model, TELEMAC-2D, and the third-generation spectral wave model TOMAWAC model (Benoit et al., 

1996), which are part of the TELEMAC-MASCARET numerical platform (www.opentelemac.org). While 

TOMAWAC is run on both oceanic and coastal domains, TELEMAC-2D is run on the coastal domain only, 

such that tidal water levels and currents are computed and updated in TOMAWAC coastal domain every 

15 min. ANEMOC-3 gives 30 min period output of wave parameters such as spectral significant wave height 

𝐻𝑚0, mean wave periods 𝑇𝑚−1,0 and 𝑇𝑚02 , peak period 𝑇𝑝 , directional spreading 𝜎, mean wave direction 𝐷𝑖𝑟𝑚 

and mean wave power (per meter of length crest). The results presented hereafter concern the oceanic domain 

only. More details concerning the hindcast database ANEMOC-3 are described in Teles et al. (2022). 

  

http://www.opentelemac.org/


3.1. The wave action conservation equation 

TOMAWAC solves the wave action balance equation with energy source/dissipation processes modelled with 

semi-empirical parameterizations. The relevant variable for describing the sea state is the directional spectrum 

of wave energy which is also known as wave directional spectrum of energy and will henceforth be denoted 

as 𝐸. From the wave directional spectrum, the wave action can be expressed as follows: 

𝑁 =  𝐸 𝜌𝑔𝜎⁄ = 𝐹 𝜎⁄     (6) 

where 𝜎 denotes the relative or intrinsic angular frequency, i.e. the angular frequency being observed in a 

coordinate system moving at the velocity of current, 𝜌 the water density, 𝑔 the gravitational acceleration and 

𝐹 the directional variance spectrum. 

TOMAWAC solves the following action flux conservation or balance equation: 

𝜕𝑁

𝜕𝑡
+
𝜕(�̇�𝑁)

𝜕𝑥
+
𝜕(�̇�𝑁)

𝜕𝑦
+
𝜕(𝑘�̇�𝑁)

𝜕𝑘𝑥
+
𝜕(𝑘�̇�𝑁)

𝜕𝑘𝑦
=  𝑄(𝑘𝑥, 𝑘𝑦, 𝑥, 𝑦, 𝑡)    (7) 

where 𝑥 and 𝑦 are the horizontal Cartesian coordinates, 𝑡 is time, 𝑘𝑥 and 𝑘𝑦 the wave number for directional 

spectrum discretization along 𝑥 and 𝑦 coordinates respectively and 𝑄(𝑘𝑥 , 𝑘𝑦, 𝑥, 𝑦, 𝑡) are the source, transfer 

and sink terms. 

The source and sink terms that compose 𝑄(𝑘𝑥 , 𝑘𝑦, 𝑥, 𝑦, 𝑡) in the right-hand members of Eq. (7) gather the 

contributions from the physical processes listed in Fig. 2. 

 
Fig. 2. Overview of TOMAWAC source and sink terms 

In this work, the wind generation source term (𝑄𝑖𝑛) based on Janssen’s model (Janssen, 1991) and white-

capping dissipation term (𝑄𝑤𝑐) from the van der Westhuysen et al. (2007) model are studied. Within the 

oceanic mesh, only these two terms together with the non-linear quadruplets term are activated in the 

calculations. 

3.1.1 Wind-driven wave generation 

Janssen’s input model, coming from a quasi-linear theory for modelling the ocean/atmosphere interactions, is 

function of the directional variance spectrum 𝐹(𝑓, 𝜃): 

𝑄𝑖𝑛 = 𝜎𝜖𝛽 ([
𝑢∗

𝐶
+ 𝑧𝛼]𝑚𝑎𝑥[𝑐𝑜𝑠(𝜃 − 𝜃𝑤); 0])

2
𝐹(𝑓, 𝜃)    (8) 

with 𝜖 the ratio of air and water densities, 𝐶 = 𝜎 𝑘⁄  the wave phase velocity, 𝜃𝑤 the local wind direction 

(direction where it blows), 𝑢∗ the friction velocity, being linked to the surface stress, 𝑧𝛼 a constant allowing to 

offset the growth curve, 𝛽 a function such as 𝛽 = (𝛽𝑚 𝜅2⁄ )𝜇 ln4 𝜇 where 𝛽𝑚 denotes a coefficient set to 1.2 

by Janssen (1991), 𝜅 is the Von Karman’s constant and 𝜇 denotes the non-dimensional critical height such as 

𝜇 = 𝑚𝑖𝑛 [
𝑔𝑧0

𝐶2
𝑒𝑥𝑝 (𝜅 [

𝑢∗

𝐶
+ 𝑧𝛼]⁄ 𝑐𝑜𝑠(𝜃 − 𝜃𝑤)) ; 1.0] with 𝑧0 = 𝛼

𝑢∗
2

𝑔√1−𝜏𝑤 𝜏𝑠⁄
 where 𝛼 denotes the Charnock 

constant set to 0.01 in Janssen (1991) and 𝜏𝑠 and 𝜏𝑤 are respectively the surface and wave stress. 

To conclude, the wind-driven wave generation model contains two input parameters: the Charnock constant 𝛼 

and the coefficient 𝛽𝑚. The Charnock constant 𝛼 and the coefficient 𝛽𝑚 are assumed to be contained in 

intervals set to respectively [0.007; 0.02]and [0.8; 1.6]. 
  



3.1.2 White-capping-induced energy dissipation 

In this study, the white-capping or the wave steepness induced breaking is taken from van der Westhuysen 

(2008). This model is based on a saturation-based model formulation, which defines the 𝑄𝑤𝑐 term as depending 

on the saturation threshold 𝐵𝑟. Its formulation combines the white-capping dissipation parameterization from 

the Komen et al. (1984) model with that of van der Westhuysen et al. (2007) as follows: 

𝑄𝑤𝑐 = 𝑓𝑏𝑟(𝑓)𝑄𝑤𝑐
𝑊 + (1 − 𝑓𝑏𝑟(𝑓))𝑄𝑤𝑐

𝐾     (9) 

with 𝑓𝑏𝑟(𝑓) =
1

2
+
1

2
tanh {10 [(

𝐵(𝑘)

𝐵𝑟
)
1 2⁄

− 1]} where the saturation threshold 𝐵𝑟 is a model parameter, 𝑄𝑤𝑐
𝑊  

and 𝑄𝑤𝑐
𝐾  are respectively the dissipation parametrizations from van der Westhuysen et al. (2007) and Komen 

et al. (1984). 

The expression proposed by van der Westhuysen et al., (2007) is: 

𝑄𝑤𝑐
𝑊 = −𝐶𝑑𝑖𝑠,𝑏𝑟𝑒𝑎𝑘 (

𝐵(𝑘)

𝐵𝑟
)
𝑝0 2⁄

𝑔1 2⁄ 𝑘1 2⁄ 𝐹(𝑓, 𝜃)    (10) 

where 𝐵(𝑘) = 𝐶𝑔𝑘
3 𝐸

2𝜋
 with 𝐶𝑔the wave group speed, 𝑝0 = 3 + tanh {𝑤 (

𝑢∗

𝐶
− 0.1)} with 𝑤 set to 25 in  van 

der Westhuysen et al. (2007) and 𝐶𝑑𝑖𝑠,𝑏𝑟𝑒𝑎𝑘 a coefficient parameter. 

The expression proposed by Komen et al., (1984) is: 

𝑄𝑤𝑐
𝐾 = −𝐶𝑑𝑖𝑠�̅��̅�

4𝑚0
2 (𝛿

𝑘

�̅�
+ (1 − 𝛿) (

𝑘

�̅�
)
2
)  𝐹(𝑓, 𝜃)    (11) 

with 𝑚0 the total variance, �̅� the average intrinsic frequency and �̅� the average wave number. 𝐶𝑑𝑖𝑠 and 𝛿 two 

parameters of the dissipation model. 

At the end, the white-capping-induced energy dissipation contains four constants assumed here to be 

calibration parameters: the parameters 𝐶𝑑𝑖𝑠,𝑏𝑟𝑒𝑎𝑘 and 𝐶𝑑𝑖𝑠, the white-capping weighting coefficient 𝛿 in 

Komen’s relationship and the saturation threshold 𝐵𝑟. The parameter variation intervals are set such as: 

𝐶𝑑𝑖𝑠,𝑏𝑟𝑒𝑎𝑘 ∈ [0.1; 1. ] × 10
−4, 𝐵𝑟 ∈ [0.5; 2.5] × 10

−3, 𝐶𝑑𝑖𝑠 ∈ [1. ; 6. ] and 𝛿 ∈ [0. ; 1. ]. 

3.1.3 Summary of parameter range variation 

All the model input parameters and their associated probability distribution are summarized in Table 1. 

 
Table 1. Input parameters and associated probabilistic models for ANEMOC-3 application. 

Variable name Nature Variation interval 
Probability 

distribution 

Charnock constant 𝛼 Real scalar [0.007; 0.02] Uniform 

Wind-driven coefficient 𝛽𝑚 Real scalar [0.8; 1.6] Uniform 

Van der Westhuysen dissipation coefficient 𝐶𝑑𝑖𝑠,𝑏𝑟𝑒𝑎𝑘 Real scalar [0.1; 1. ] × 10−4 Uniform 

Saturation threshold 𝐵𝑟 Real scalar [0.5; 2.5] × 10−3 Uniform 

White-capping dissipation coefficient 𝐶𝑑𝑖𝑠 Real scalar [1. ; 6. ] Uniform 

White-capping weighting coefficient 𝛿 Real scalar [0. ; 1. ] Uniform 

3.2. Available data 

The capability of ANEMOC to model mean and extreme sea states is here evaluated based on buoy 

measurements during the one-month period of February 2014. Several very intense storms occurred over the 

northern part of the Atlantic Ocean within this time frame. The measurements are collected from both offshore 

(deep waters) and coastal (intermediate waters) wave buoys from the CANDHIS (France) and UKMO 

networks, with water depths ranging from 20 m to 4300 m (Fig. 3). 

https://www.sciencedirect.com/science/article/pii/S1364815221002851#tbl1


 
Fig. 3. Bottom elevation and location of buoys considered over the ANEMOC-3 oceanic model. 

The spectral significant wave height 𝐻𝑚0was continuously measured from CANDHIS (every 30 min) and 

UKMO (every 60 min) wave buoys. As an example, Fig. 4 shows the time series of 𝐻𝑚0, during January and 

February 2014, recorded at the Brittany buoy (UKMO 62163), located offshore Brittany in the Atlantic Ocean. 

It can be noticed that, in the first 15 days of February 2014, 𝐻𝑚0 remained higher than 4 m, with high peak 

values reaching 13-14 m. In this 2-month period January-February 2014 alone, 6 storms have their peak 

𝐻𝑚0values exceeding 10 m at this location. 

 

 

Fig. 4.  Significant wave height evolution during the months of January and February 2014 measured at Brittany buoy (UKMO 62163).  

4. Results 

This study has been carried out following the Application Programming Interface (API) framework described 

by Goeury et al. (2022). In this framework, the sensitivity analysis and the calibration algorithm are performed 

by coupling TOMAWAC respectively with the open-source library for uncertainty treatment named 

“OpenTURNS”, standing for “Open source initiative to Treat Uncertainties, Risks’N Statistics” 

(www.openturns.org) (Baudin et al., 2015) and the data assimilation library ADAO (A module for Data 

Assimilation and Optimization) (https://pypi.org/project/adao) (Argaud, 2019). 

4.1. Sensitivity analysis 

To handle dynamic system behaviour under parameter uncertainty, a set of sample configurations is generated 

using random sampling. In this study, a design of experiment of size 1000 is constructed for the Polynomial 

Chaos Expansion (PCE) learning step. This number of model evaluations was determined based on a 

convergence study carried out the sensitivity analysis. In the sampling procedure, the parameter uncertainties 

are taken in a uniform distribution whose limits are defined by the minimum/maximum values of the variation 

range of each parameter (Tab. 1). The solver TOMAWAC ensures the relationship between a configuration 

http://www.openturns.org/
https://pypi.org/project/adao


vector of model uncertain inputs 𝐗𝑗 = (X𝑗,1, X𝑗,2⋯X𝑗,𝑝) and the output quantity of interest 𝐺(𝐱) composed of 

scalar output given at discrete time 𝑡 ∈ [1,… , T] for each point of interest corresponding to buoy locations. As 

an example, Fig. 5 shows the significant wave height evolution measured and resulting from Monte Carlo 

computations at Ouessant buoy during February 2014. 

 
Fig. 5.  Significant wave height evolution measured and resulting from Monte Carlo computations at Ouessant buoy during February 2014.  

The construction of the PCE is carried out based on Least Angle Regression Stagewise (LARS) method to 

construct an adaptive sparse PCE. In this approach, a collection of possible PCEs, ordered by sparsity, is 

provided and an optimum one can be chosen with an accuracy estimate such as corrected leave-one-out error 

used in this study. Then, the Sobol’s indices are obtained based on post-treatment of the constructed PCE as 

explained in Sudret (2008). Fig. 6 displays the time evolution of the sensitivity analysis estimate at Belle Ile 

buoy. 

 
Fig. 6.  Time evolution of Sobol’ sensitivity indices at Belle Ile buoy: First (left) and total (right) order indices.  

As shown by the sensitivity analysis, the most influent variables on 𝐻𝑚0, are the van der Westhuysen 

dissipation coefficient 𝐶𝑑𝑖𝑠,𝑏𝑟𝑒𝑎𝑘, the white-capping dissipation coefficient 𝐶𝑑𝑖𝑠, the saturation threshold 𝐵𝑟 

and the wind-driven coefficient 𝛽𝑚. In fact, the sensitivity to the white-capping weighting coefficient δ and 

the Charnock constant 𝛼 can be considered negligible in comparison. It can be noticed that there is no 

significant difference between the first and the total Sobol’ indices for the wind-driven coefficient 𝛽𝑚. Since 

the variance part explained by variable interactions of the input factor with the other uncertain parameters is 

determined by substracting the total Sobol sensitivity index and the first order Sobol index, this means that the 

interactions between the wind-driven coefficient 𝛽𝑚 with the other parameters are negligible. On the contrary, 

the interactions of the white-capping-induced energy dissipation variables have an impact on the spectral 

significant wave height. 

To conclude, the calibration problem initially composed of six input variables can be reduced to four (van der 

Westhuysen dissipation coefficient 𝐶𝑑𝑖𝑠,𝑏𝑟𝑒𝑎𝑘, white-capping dissipation coefficient 𝐶𝑑𝑖𝑠, the saturation 

threshold 𝐵𝑟 and the wind-driven coefficient 𝛽𝑚) after considering the results of sensitivity analysis. 



 

4.2. Calibration results 

As shown by Eq. (3), the optimal search for the control vector 𝐗 takes a minimization form of an objective or 

cost function. This minimization process, equivalent to the maximum a posteriori search, is carried out using 

the 3D-VAR algorithm. The control parameter is composed of the four most influential variables identified by 

the sensitivity analysis performed previously. The initial guess 𝐗0 is set to random values inside the constrained 

search space (Tab. 1). The observation vector 𝐘 is the spectral significant wave height extracted every 60 min 

at Ouessant, Belle Ile and Cap Ferret buoys from midnight February 2 to midnight March 1, 2014. The chosen 

optimization method involves computing the partial derivatives of the observation operator 𝐺 with respect to 

𝐗, a classical finite difference method with a differential increment set to 10−3 is used here. The error 

background and observation covariance matrices respectively identified by ℬ and ℛ are taken to be diagonal, 

meaning they have no error correlations. A small variance value for ℛ, justifying great confidence in the 

observation value, is considered. On the contrary, little confidence is given to the prior knowledge with a high 

variance value for ℬ. After repeating 10 times the calibration methodology with different initial guesses 𝐗0, 

the optimal value giving the best cost function result at the end of the optimization process is selected. The 

calibration algorithm finds an optimal solution in about 17 iterations with the following set of parameters 

𝐗MAP = (𝐶𝑑𝑖𝑠,𝑏𝑟𝑒𝑎𝑘 = 5.59 × 10
−5;  𝐵𝑟 = 2.15 × 10

−3; 𝐶𝑑𝑖𝑠 = 1.08 ; 𝛽𝑚 = 1.05). Fig. 7 displays the results 

of the calibration process over the computation period at Cap Ferret buoy. The simulation obtained from the 

optimal set of parameters 𝐗MAP is compared with that obtained from the parameter default values in 

TOMAWAC solver (𝐗PDV = (𝐶𝑑𝑖𝑠,𝑏𝑟𝑒𝑎𝑘 = 5 × 10
−5;  𝐵𝑟 = 1.75 × 10

−3; 𝐶𝑑𝑖𝑠 = 3.29 ; 𝛽𝑚 = 1.2)). 

 

Fig. 7.  Comparison of the spectral significant wave height time evolution with and without calibration (respectively - MAP and - PDV) with 

respect to the buoy measurements at Cap Ferret (- Obs) during February 2014. 

As expected, the spectral significant wave heights, calculated with the calibrated parameter configuration, are 

much closer to measurements than the ones computed with the parameter default values. Hereafter, Fig. 8 

shows the root mean square error (RMSE) performance of the re-analysis methodology on different buoys. 

 

Fig. 8.  Comparison of the RMSE on spectral significant wave height evolution with and without calibration (respectively - MAP and - PDV) 

with respect to the buoy measurements. 

https://www.sciencedirect.com/science/article/pii/S1364815221002851#fd18
https://www.sciencedirect.com/topics/computer-science/control-parameter


The result emphasizes the efficiency of the automatic calibration tool in the framework of ANEMOC-3 

application. In fact, after the re-analysis procedure, the RMSE decreases significantly for almost all buoys, 

indicating that the model after calibration fits the data better. A particular behaviour can be noticed for Plateau 

du Four buoy with a deterioration in results after calibration. Finally, the re-analysis results are compared to 

the ANEMOC-3 configuration where the white-capping-induced energy dissipation is taken from Komen et 

al. (1984) (with dissipation coefficient 𝐶𝑑𝑖𝑠 = 2.1 and weighting coefficient 𝛿 = 0.4). Fig. 9 and Fig. 10 show 

the scatter plot between observed versus modelled significant wave height results and the superposed Q-Q 

(quantile-quantile) plot (in black) for the ANEMOC-3 (left) and for re-analysis (right) configurations 

respectively at Belle-Ile and Cap Ferret buoys. As expected, a general good agreement is found, and the re-

analysis configuration presents a slight improvement in simulated results compared to ANEMOC-3 ones. 

 

Fig. 9.  Scatter plot and Q-Q plot of modelled versus measured 𝐻𝑚0 domains at Belle-Ile buoy for ANEMOC-3 (left) and calibrated (right) 

configurations. 

 

Fig. 10.  Scatter plot and Q-Q plot of modelled versus measured 𝐻𝑚0 at Cap Ferret buoy for ANEMOC-3 (right) and calibrated (left) 

configurations. 

5. Conclusions 

With the significant advances in the means of observing continental waters, the ability to exchange data as 

computational results has become a growing need. The objective of this work is to implement an efficient 

calibration algorithm, based on data assimilation, to best estimate partially known parameters of the source 

and sink terms (namely wind generation and white-capping dissipation coefficients) in the ANEMOC-3 

hindcast wave numerical database application. This case deals with a serie of reference events by adjusting 

some uncertain physically based parameters until the comparison with observations achieves sufficient 

accuracy. If performed manually, the model calibration is time-consuming. Fortunately, the process can be 

largely automated to significantly reduce human workload, as shown in this paper. The efficiency of the re-

analysis has been demonstrated over a selected period of one month including several intense storms. In fact, 

calculated statistical errors confirm a good fit with buoy measurement and the comparison with ANEMOC-3 



configuration shows a slight improvement in simulated results. From this work, different axes of research are 

identified. The data-driven algorithm deployed here could be extended to (i) different numerical models (larger 

and/or more refined area covering for instance the European coastline), (ii) test alternative parameterizations 

of the physical sink and source terms in the wave model to better reproduce extreme events, (iii) integrate more 

observation data (remote sensing altimeter data, for instance), or (iv) correct the simulated wave spectra using 

observations. 
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