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A B S T R A C T

A two-way domain decomposition coupling procedure between a fully nonlinear potential flow model and a
Navier–Stokes solver capturing the free surface with a Volume of Fluid method is used to study wave–structure
interaction applied to offshore wind turbines. Away from the structure, the large-scale inviscid wave field is
modeled by the potential code. Wave generation and absorption in this 3D hybrid model take place in the
outer potential domain. The codes exchange data in the region around their common boundaries. Through
the two-way coupling, waves propagate in and out of the viscous subdomain, making the hybrid algorithm
suitable to study wave diffraction on marine structures, while keeping the viscous subdomain small. Each code
uses its own mesh and time step. Subdomains are overlapping, therefore continuity conditions on velocity and
free surface have to be verified on two distinct coupling surfaces at any time. Parallel implementation with
communications between the models relying on the Message Passing Interface library allows calculations on
large spatial and temporal scales. The coupling algorithm is first tested for regular nonlinear waves and then
applied to simulate wave loads exerted on a vertical monopile in 3D. Attention is paid to the high-order
components of the horizontal force.
1. Introduction

Among the decarbonized power sources needed to meet the re-
quirements of the United Nations’s Paris Agreement (United Nations,
2015) on mitigating global warming, Offshore Wind Turbines (OWT)
are an attractive option and a fast-developing industrial sector. With an
installed capacity of 25 GW as of 2020, OWT already represent 12.9%
of the total wind power capacity (194 GW) (Wind Europe, 2021).

Depending on the local water depth, either fixed or floating OWT
solutions can be deployed. Whatever the retained solution, OWT struc-
tures should withstand various mechanical loads, originating from
wind, waves or ocean currents, in particular in extreme (storm) con-
ditions. Among these, the wave loads are usually the most prominent
ones. For that purpose, analytical, experimental and numerical inves-
tigations are conducted in the design phase of OWT foundations or
floaters. Due to the diversity and complexity of the physical phenomena
related to wave–structure interaction, analytical, or semi-analytical
approaches, such as the Morison equation (Morison et al., 1950), albeit
widely used in the industry, are limited to small wave steepness.
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Model-scale experiments, on the other hand, account for the full
physics and remain a valuable option for the validation of numerical
models used in the design process, in particular for floating foundations
or in case of specific nonlinear wave loads, like breaking loads. They
are however time-consuming and costly, and do not always allow for
an accurate assessment of certain wave-induced flow properties, such as
complex three-dimensional (3D) velocity fields or hydrodynamic pres-
sure levels on a structure. Furthermore, scale effects might deteriorate
the quality of results, in particular regarding damping.

Numerical methods of OWT design provide access to any variable
of interest in the whole computational domain at prototype scale, and
are less expensive than experimental campaigns. However, as the most
widely used engineering tools rely on the Morison equation for the
hydrodynamic part, which only takes incident wave kinematics into
account, not all physical phenomena can be simulated and various
approximations are made. This way, low computational costs are ob-
tained. Indeed, the drag force exerted on the structure is estimated
from a drag coefficient (possibly as a function of flow conditions),
029-8018/© 2024 The Authors. Published by Elsevier Ltd. This is an open access
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the wave diffraction is modeled by a single coefficient, and the wet-
ted area is approximated. One should ensure that such numerical
results are relevant and capture the main physical processes, like drag
and inertia forces for hydrodynamics, thrust and wake description for
aerodynamics. Although many case-specific modifications exist, essen-
tially the Morison equations are based on integrating two-dimensional
strips of the geometry, generally ignoring three-dimensional effects.
Recently approaches for including slamming loads in this type of semi-
empirical formulations have been developed, but require calibration as
well (Renaud et al., 2023).

This makes necessary the development and use of higher fidelity
models, e.g. based on Computational Fluid Dynamics (CFD) approaches,
in order to identify the domain of validity of design models. As
very different time and space scales are involved, this might call
for the use of very fine time and space discretizations, and lead to
unrealistic computational costs. Numerical methods allowing for a
reduced computational burden are then sought that also keep sufficient
accuracy.

Hence, coupling a potential wave model accurately describing large-
scale wave propagation and a viscous CFD solver simulating the main
physical phenomena related to wave–structure interaction at the local
scale is an interesting option. This is the major motivation of this
work aiming at developing and validating a two-way coupling strategy
between a Fully Nonlinear Potential Flow (FNPF) solver and a Navier–
Stokes (NS) solver. A 3D two-way coupled model is developed, with
the goal of applying it to wave-interaction problems of large spatial
and temporal scales involving fixed structures. To that end, attention is
paid to the flexibility of the designed hybrid strategy and its suitability
for the simulation of various wave-induced flows. The accuracy and
stability properties of the simulated cases are investigated in detail,
as well as several related numerical challenges. Parallelization of the
hybrid procedure is ensured so that the method can be applied to 3D
cases of potential interest for the engineer. Complex model layouts are
also considered, involving more than one instance of each code.

The remainder of this article is organized as follows: in Section 2 a
literature review is presented covering potential, viscous and hybrid
(i.e. coupled) approaches. The FNPF and NS models selected in the
present study are briefly described in Section 3, while the proposed
two-way coupling strategy is presented in Section 4. The hybrid model
is then applied and validated with 2DV (two-dimensional vertical)
regular wave cases in Section 5. Coupled 3D simulations of diffraction
of regular nonlinear waves on a vertical cylinder are performed in
Section 6, and compared with wave tank experiments. Conclusion and
outlook for future work are given in Section 8.

2. Literature review of coupling methods

Among hybrid techniques previously applied to water waves prop-
agation and wave–structure interaction simulation, that rely on the
near-field/far-field distinction, different global approaches can be dis-
tinguished. In this paper, we will restrict our attention to couplings
between potential flow and Navier–Stokes models.

Wave propagation and wave transformation on a varying bottom
over large distances in finite depth, among other problems, are effi-
ciently handled by mathematical models devoted to the description of
incompressible and irrotational (hence kinematically inviscid) flows,
namely potential free surface models, such as reviewed by Dias and
Bridges (2006). In these models, a Laplace equation on the velocity po-
tential for mass conservation is solved in a domain in which free surface
position is not known a priori. Indeed, nonlinear kinematic and dynamic
boundary conditions govern the time-evolution of the free surface
shape and potential at the free surface. Other linear conditions com-
plete the set of boundary equations to yield a Boundary Value Problem
(BVP) to be resolved at every considered time instant, leading to so-
called FNPF models. For this paper, a Boundary Element Method (BEM)
formalism will be used. Green’s second identity is used to express the
velocity potential anywhere inside the water volume as a function of
2

the potential and its normal derivative on the fluid domain boundaries,
in the form of Boundary Integral Equations (BIE). Physical assumptions
made to characterize the flow on every domain boundary translate
into Dirichlet and Neumann conditions on the velocity potential, and
possibly on its time derivative. The above-mentioned fully-nonlinear
kinematic and dynamic free surface boundary conditions yield, through
a time-stepping procedure, a Dirichlet condition for the potential (and
its time derivative), whereas Neumann conditions are imposed on all
other boundaries.

Even with fully-nonlinear models, the potential flow assumption
inherently prevents from describing rotational, viscous, and turbulent
effects experienced near the structures of interest. A precise description
of wave-induced flows in the neighborhood of a fixed or moving struc-
ture requires the solution of the full Navier–Stokes (NS) equations to
account for rotational, viscous, and possible turbulent effects. Though
many models exist, in this paper, we focus on just the Volume Of
Fluid (VOF) method, following the pioneering work of Hirt and Nichols
(1981), in the CFD code code_saturne (CS). The use of these high-
fidelity CFD models to simulate free surface flows over large temporal
and spatial scales is limited, as already stated, by the large associated
computational costs. These methods also suffer from possibly excessive
numerical diffusion levels, hence they are not as accurate as the po-
tential models to simulate wave propagation over large distances. This
explains why hybrid or coupled methods, either based on Functional
Decomposition (FD) or Domain Decomposition (DD), have been used
to solve large scale wave-induced flows.

Physical assumptions made in both near-field and far-field models
may differ: although in the majority of far-field models a potential
flow is considered, in certain cases Euler equations are solved instead,
allowing to represent rotational effects (Di Paolo et al., 2021). The
scope is here limited to studies involving the resolution of NS equations
in the near-field domain, although investigations have been reported
that use potential methods of uneven accuracy levels and CPU costs to
describe flows in both regions (Ferrant, 1998; Bai and Eatock Taylor,
2007). When it comes to solving the near-field wave problem then, the
diversity of NS numerical methods is reproduced in hybrid approaches.

Discrepancies are also related to the extent of numerical domains
where the respective sets of equations are solved. Indeed, the use of a
DD method, as its name suggests, involves that in most of the global
simulation domain the description of the flow is provided by only one
model. Solvers thus exchange information at their coupled boundaries.
On the other hand, in FD approaches, where variables of interest
(namely velocity, pressure, free surface position or phase function) are
decomposed into a part related to the incident (as well as, possibly,
diffracted) wave field, and a complementary one taking into account
the remaining wave–structure interaction phenomena, potential and NS
equations are solved over fully overlapped domains. Nested domain-
decomposition techniques are singular in that the small CFD domain of
a limited extent is enclosed in a wider far-field domain, thus it implies
that the corresponding part of the far-field domain is not taken into
account in the simulation. If near-field to far-field feedback is made
possible, near-field variables should be imposed to the outer solver in
the interior of its numerical domain.

A last criterion that significantly differentiates coupling strategies is
whether simulation data are only transmitted from the far-field to the
near-field model (one-way coupling), or whether the opposite is also
true (two-way coupling). A one-way coupling methodology enables a
preliminary computation of the outer wave field, as near-field feedback
is not provided during the simulation. In two-way coupling techniques,
reflected, diffracted or radiated waves might be dealt with in the
far-field model. Therefore it allows for a reduction of the near-field
domain’s size, as compared to one-way hybrid methods where waves
scattered by a structure can only be simulated in the inner region. This
also comes at the cost of extra implementation choices and challenges,
and possible stability issues. In the following, a literature review is
conducted on the basis of this classification.

FD based couplings. FD methods have been successfully applied to

a number of wave-body interaction cases. The Spectral Wave Ex-
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plicit Navier–Stokes Equations (SWENSE) method is one of the most
prominent FD, also called perturbation, approach. Among numerous
other works, it enabled the simulation of a bottom-mounted circular
cylinder in regular nonlinear waves (Gentaz et al., 2004) as well as
that of a captive buoy with a heaving skirt subject to plane regular
and irregular multidirectional waves (Monroy et al., 2011). It consists
of a combination of a fully nonlinear potential spectral model with a
one-phase or two-phase Reynolds Averaged Navier–Stokes Equations
(RANSE) solver (several models have been used). It should be noted
that the far-field model only accounts for the incident wave field, due to
the spectral formalism, in which only symmetrical or periodic domains
can be represented. Hence, the far-field potential calculation can be run
prior to the viscous near-field one.

General considerations about FD methods, as well as an imple-
mentation with OceanWave3D as the comprehensive model to treat
wave-body interactions, are reported in Ducrozet et al. (2014). It should
be mentioned that this technique permits all physical phenomena re-
lated to wave-body interactions, as well as nonlinear wave-wave and
wave-bottom interactions. Therefore, it belongs to the class of ‘‘strong’’
couplings that can simulate large scattered wave fields away from the
body. Nonlinear interactions between waves and uneven bottom, if not
accounted for by the far-field solver, as well as nonlinear interactions
between incident and scattered waves, are indeed described by the
viscous CFD model without any restrictive hypothesis. In the SWENSE
formalism, this means that the refined part of the RANSE mesh, in
which the latter effects operate, should have its size adapted to its
expected spatial extent. It is therefore very well adapted, in the context
of wave–structure interaction, to the description of problems involving
small bodies, in which the incident flow is not disturbed much and
viscous effects are predominant, while the occurrence of diffraction
and radiation phenomena are limited to the body’s vicinity. Small
body problems are characterized by large Keulegan–Carpenter numbers
(KC = 2𝜋𝐴

𝐷 , where 𝐴 is the incident wave amplitude and 𝐷 the
characteristic size of the structure). The larger the structure, the smaller
the KC, and the larger the diffraction/radiation effects. To deal with
this latter case in the SWENSE framework or with related methods, it
is necessary to increase the size of the refined part of the RANSE grid
to allow for physically accurate computations. This leads to growing
mesh sizes and CPU time requirements, minimizing the gains brought
about by the coupling. If the refined part of the RANSE grid is too small,
waves are damped in an unphysical manner while traveling on coarser
parts of the mesh. It would be interesting to compare the relative
performances of FD methods and two-way DD ones in such cases, as
in the latter nonlinear wave-wave interactions are dealt with in the
computationally less demanding far-field model.

A perturbation approach is used in Harris and Grilli (2012) to simu-
late wave-induced boundary layer flows, where a 2D FNPF-BEM solver
is coupled to a 3D NS model. Recently, Robaux (2020) and Robaux
and Benoit (2022) proposed a FD model coupling a 2DV HPC potential
model with a RANSE VOF solver of OpenFOAM. Similarly, this kind
of approach was studied by O’Reilly et al. (2022). The HPC formalism
represents interactions of waves with possibly moving and surface-
piercing structures in the potential flow model. In the mentioned works,
only cases involving fixed 2D fully-submerged bodies were investigated.
Therefore, it considers an incident wave field, as well as the fully-
nonlinear potential diffracted wave field. Thus, larger values of KC
might be considered without an excessive penalty on computational
cost, as long as viscous and turbulent effects on the scattered wave field
are restricted to the vicinity of the body.

One-way coupling DD approaches. One-way DD coupling techniques, as
hey only require the transfer of information from the far-field to the
ear-field model, are easier to implement than two-way DD methods.
or this reason, a large number of authors have applied them to wave-
nduced flows occurring in ocean or coastal engineering. Therefore, we
o not intend to be exhaustive here, and only a few works related to
ave-body interactions are presented.
3

Guignard et al. (1999) computed the shoaling of solitary waves
on a mild slope through a BEM/VOF hybrid one-way 2D approach.
Hildebrandt and Sriram (2014) studied pressure distribution on and
vortex shedding behind a bottom-mounted vertical circular cylinder
impacted by steep focused waves combining a FEM potential model
and a commercial RANSE solver. Numerical results were compared to
experimental ones. Similarly, Paulsen et al. (2014) used OceanWave3D
and a VOF solver from OpenFOAM to study wave loads on a surface-
piercing cylinder standing for an offshore wind turbine foundation,
under different wave conditions and bottom configurations. Using the
same tool, Veic and Sulisz (2018) investigated pressure distribution
from irregular breaking waves on a monopile with the same setup. A
3-hour storm was simulated in the potential model and the impact of
the highest breaking wave was then numerically reproduced.

For more recent works, note also that Robaux (2020) and Robaux
and Benoit (2022) implemented both FD and one-way DD methods,
and compared them on the case of waves diffracted by a submerged
fixed body. Batlle Martin et al. (2022) and Batlle Martin et al. (2023)
considered a one-way DD with CS for breaking focused waves.

Two-way coupled methods. As not so many two-way coupled models
have been reported so far, in this section the scope of considered
applications is widened beyond wave-body interactions in finite water
depth. Some of the earliest two-way hybrid approaches were reported
for steady free surface problems. Campana et al. (1995) and Chen
and Lee (1999) studied the flow past a ship advancing at a constant
speed using overlapping domain decomposition methods, with linear
and nonlinear assumptions for the free surface boundary conditions,
respectively.

Iafrati and Campana (2003) computed wave-breaking 2D flows with
a two-way coupled method, in which free surface is enclosed in the
viscous top domain, while a Laplace equation on the potential is solved
in a region underneath the latter. In this paper, a further distinction
is established among two-way coupling methods, that we endorse and
employ to describe and sort other two-way hybrid studies. For the
sake of simplicity, we restrict the description to the case of a single
coupling region. Iafrati and Campana (2003) state that, depending
on whether near-field and far-field numerical domains are overlapped
or not, different sets of coupling transmission conditions should be
specified on their common boundary(ies). In both situations, continuity
of the velocity should be ensured on the near-field or common matching
surface, therefore all components of the potential far-field velocity
vector are sent to the near-field NS model to be used as Dirichlet
boundary condition on the viscous velocity. If both domains overlap, a
kinematic condition imposing the continuity of the normal velocity on
the far-field boundary should be set. This amounts to a heterogeneous
Neumann boundary condition on the velocity potential, thus the over-
lapping domain decomposition coupling is called ‘‘Neumann type’’ (NT)
coupling. If, alternatively, a common coupling boundary is used, the
velocity continuity condition already mentioned is complemented by
a normal stress continuity condition, through which pressure from the
RANSE solver is imposed to the outer potential model. By integrating
Bernoulli’s equation, a Dirichlet condition on the velocity potential is
obtained on the unique coupling boundary (‘‘Dirichlet type’’ coupling
(DT)). Note that nothing is said about the free surface, as it is totally
enclosed in the viscous domain. Whatever the coupling type, an itera-
tive time-stepping procedure is followed in Iafrati and Campana (2003)
to enforce the continuity requirements.

Lachaume et al. (2003) briefly discuss two-way coupled simulations
of a solitary wave shoaling over a plane slope, in which the free surface
is described in both models. The BEM model of Grilli et al. (2001)
is combined with a VOF instance, but very few results are displayed,
and for the considered case a one-way coupling approach seems to
be sufficient. Greco et al. (2002) applied a DT coupling between BEM
and VOF models to dam-breaking and water loading on deck structure

2D problems involving complex free surface geometries. Again, and
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as for all the remaining studies addressed in this section, the free
surface is split between near-field and far-field wave models. Alongside
experimental results, a comparison of DT and NT coupling VOF-based
techniques is realized in Greco (2002) in the same context. The NT
coupling, albeit less computationally efficient than the DT coupling, is
found to successfully simulate a wave-induced flow oriented towards
the outer region, whereas the DT coupling fails. A NT strategy is thus
retained and described in detail in Colicchio et al. (2006), involving
two-phase BEM and NS-LS models. Further explanations are given as
to the advantages of the NT technique over the DT one, in terms of
allowed flexibility of spatial discretizations in each model. It should be
noted that the NT coupling procedure differs from the one presented
in Iafrati and Campana (2003) as information on free surface position
and orientation, but also pressure values are exchanged between cou-
pled models. This way a Neumann boundary condition on the time
derivative of the potential in the BEM model is available. An intrinsic
algorithm is used for time integration, in which time stepping schemes
of BEM and NS-LS models are linked. At several instants per time
step, both sub-domains successively exchange coupling variables. This
is made possible by the fact that they share the same time-step size.
Siddiqui et al. (2018), from the same research group, used a HPC-
VOF DT coupling method to simulate the 2D behavior of a damaged
ship section in forced heave motion. Coupled models still share the
same time step size, but time marching is done separately and coupling
information is exchanged only once per time step through the matching
boundary. Following the work of Colicchio et al. (2006), a NT coupling
involving HPC and single phase NS-LS models is presented in Hanssen
(2019) and applied to the 2D propagation of regular waves.

A 2D BEM-VOF NT hybrid model is presented in Kim et al. (2010),
and successfully applied to nonlinear regular and irregular wave propa-
gation problems. It features several noteworthy characteristics. Indeed,
both models use different spatial and temporal resolutions, such that
the BEM time step equals an integer multiple 𝑁 of the NS-VOF one.
Hence, the exchange of coupling data at both ends of the overlapping
region occurs once every 𝑁 VOF time steps, and the coupling procedure
is not iterative. Moreover, the BEM free surface in the latter part of
the domain is relaxed towards the VOF solution to ensure continuity.
Changes made to the velocity potential at the free surface account
for this modification of the free surface shape. Hybrid simulation
results are compared to those of VOF-only computations and equivalent
accuracy levels are observed, for a fraction of the computational time.

Another 2D BEM-VOF model similar to that of Kim et al. (2010) is
proposed by Guo et al. (2012). As in Kim et al. (2010), a low-order
in space fully nonlinear potential model is coupled with a NS-VOF
solver. The verification of the coupled model is done with regular wave
propagation and full reflection cases, prior to its application to the
simulation of regular nonlinear wave impacts on a fixed horizontal
plate. A non-overlapping DT coupling is implemented by Zhang et al.
(2013) and tested on 2D dam-break and solitary wave propagation over
constant depth cases. Lu et al. (2017) is one of the few reported 3D two-
way couplings. It is of Neumann type, combines potential and viscous
solvers both based on Finite Volume formalism and relies heavily on
the OpenFOAM toolbox. 2D cases of solitary wave propagation, regular
wave forces on a fixed partly-submerged barge, and regular shallow-
water waves shoaling and breaking on a slope are investigated, whose
results are compared to theoretical and experimental references. At last,
a qualitative study of the motion and subsequent radiated wave field
of a freely falling 3D object is presented. This last article might well be
the one with which the present study is the most closely related.

Two-way hybrid models involving shallow-water models and more
comprehensive RANS models have been developed and successfully
applied to 2D shallow-water wave flows by Sitanggang and Lynett
(2010) and Pringle et al. (2016). Mintgen and Manhart (2018) used
a Shallow-Water Equations (SWE) 2D solver combined with a VOF
module for surface capturing in 3D in OpenFOAM to simulate wave
4

propagation and wave–structure interactions. It should be noted that in
this work, the direction of the transfer of coupling information depends
on the instantaneous nature of the flow.

Several authors have investigated hybrid methods combining a
potential model and a meshless Lagrangian NS solver. Sueyoshi et al.
(2007) simulated 2D wave-body interactions with a BEM model and
a Moving Particle Semi-Implicit (MPS) method, with a top-bottom do-
main decomposition approach inspired by that of Iafrati and Campana
(2003). A novel moving overlapping zone is implemented in Sriram
et al. (2014) to build a NT hybrid method between a FEM poten-
tial model and an Improved Meshless Local Petrov Galerkin method
with Rankine source solution (IMLPG_R) to simulate the propagation
and breaking of 2D waves. Similarly, Yan and Ma (2017) simulate
2D non-breaking focused waves. Verbrugghe et al. (2018) built a
two-way coupling strategy in which the numerical domain of Ocean-
Wave3D, the large scale fully-nonlinear potential model, encloses a
small SPH (DualSPHysics) domain. Horizontal velocity is transmitted
to SPH boundaries. The two-way coupling is however not complete, as
only the free surface position is transmitted to the potential model from
the SPH instance. The method is verified with regular wave propagation
cases, then applied in 2D to the simulation of a fixed oscillating water
column and a floating box in waves. 3D simulations of a heaving
cylinder in waves presented in Verbrugghe et al. (2019) are realized
with a one-way coupling approach only.

Hamilton and Yeung (2011) simulated the diffraction of linear
plane waves by a vertical cylinder with a singular two-way coupling
method that could be considered of Dirichlet type. Shell functions
in a polar coordinate system are used to characterize a linear outer
wave-induced potential flow coupled with an inner one-phase viscous
solution, through a vertical cylinder matching boundary. It should be
noted that the NS solver also makes use of linearized free surface
boundary conditions. Kemper et al. (2019) developed a DD method
in which a small OpenFOAM NS-VOF domain is nested in a larger
FDM OceanWave3D domain. It was applied to 2D wave propagation
over a submerged bar. Recently, a somewhat different 2D-3D coupling
strategy involving OpenFOAM instances was reported by Di Paolo et al.
(2021). Plane-wave generation and propagation are done in a NS-VOF
2DV domain while interaction with structures is dealt with using the
same solver but accounting for 3D effects.

From this review, it appears that although 3D one-way DD and
FD hybrid methods have been successfully applied to a number of
different wave-body interaction problems, the same cannot be said of
two-way DD techniques. The vast majority of investigations indeed
involve 2DV domains, and only recently have 3D cases been reported.
For example, the sinking semi-submersible platform in the study of Lu
et al. (2017) was not compared to reference results. Now, however,
more advanced 3D two-way couplings, like that of Saincher and Sriram
(2022), show the possibilities compared to laboratory experiments.
Nevertheless, there seems to be room for improvements and validated
applications to 3D cases.

3. Potential flow and NS solver description

3.1. Description of the FNPF solver seine3d

The far-field flow solver in the two-way hybrid strategy imple-
mented in the current work is referred to as seine3d, and uses a
higher-order BEM approach. For a more in-depth presentation of this
model, the reader is referred to Grilli et al. (2001) and Harris et al.
(2022).

3.1.1. Governing equations
As stated above, we consider the irrotational flow of an incompress-

ible and inviscid fluid as a physical model for wave-induced water
flows. Mass conservation in the fluid domain 𝛺 yields the following
Laplace equation:
2
∇ 𝜙 = 0 in 𝛺 (1)
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𝐮 = ∇𝜙 in 𝛺 (2)

with 𝜙 the velocity potential and 𝐮 the flow velocity in 𝛺. From Green’s
econd identity, it comes that Eq. (1) is changed into a BIE to be verified
n the domain boundary 𝛤 , at a collection of collocation points 𝐱𝑖
𝑖 = 1,… , 𝑁𝛤 ),

(𝐱𝑖)𝜙(𝐱𝑖) = ∫𝛤

[

𝜕𝜙
𝜕𝑛

(𝐱)𝐺 − 𝜙(𝐱) 𝜕𝐺
𝜕𝑛

]

d𝛤 , (3)

here 𝛼 is the interior solid angle made by the boundary at 𝐱𝑖 (equal to
𝜋 if the surface is smooth), 𝐧 the outwards normal vector to the bound-
ry at point 𝐱 and 𝐺 the 3D free space Green’s function of Laplace’s
quation, based on the distance 𝑟𝑖 = ‖𝐱 − 𝐱𝑖‖ from point 𝐱𝑖 to point 𝐱
n the boundary. The Green’s function satisfies the following relations:

𝐺(𝐱 − 𝐱𝑖) =
1

4𝜋 𝑟𝑖
(4)

𝜕𝐺
𝜕𝑛

(𝐱 − 𝐱𝑖) = −
(𝐱 − 𝐱𝑖) ⋅ 𝐧

4𝜋 𝑟3𝑖
(5)

nder the same set of assumptions, the integrated form of the mo-
entum conservation equation reduces to the generalized unsteady
ernoulli equation, which reads, at all times:
𝜕𝜙
𝜕𝑡

= −𝑔𝑧 − 1
2
∇𝜙 ⋅ ∇𝜙 −

𝑝
𝜌

in 𝛺 (6)

ith 𝑔 the gravitational acceleration, 𝑧 the vertical coordinate, 𝑝 the
luid pressure assumed to be constant on the free surface, and 𝜌 the fluid
ensity. Eq. (6), yields the dynamic free surface boundary condition
rescribed on the air–water interface, used in combination with a
inematic free surface boundary condition expressing that free surface
𝑓 is advected with the flow.

The nonlinear Eq. (6), once integrated in time, yields a Dirichlet
ondition on 𝜙 on the free surface whose geometry is computed by
racking free surface nodes in time. Other typical boundary conditions
nclude homogeneous Neumann conditions on 𝜙 on the vertical lateral

faces and bottom region enclosing 𝛺, expressing the impermeability
of these walls. In certain cases, these are complemented by a het-
erogeneous Neumann condition on a part of the domain dedicated
to wave generation, either vertically fixed or moving. Wave kine-
matics from various wave theories might indeed be enforced on a
vertical boundary, or alternately a realistic wavemaker motion might
be reproduced (see Grilli and Horrillo, 1997 for details about wave
generation). As only far-field waves are investigated in seine3d in the
current work, there is no need to represent submerged or surface-
piercing, fixed or floating bodies in 𝛺, thus we have a complete
set of boundary conditions available, ensuring the well-posedness of
the problem. Given that suitable initial conditions are provided, as
well as a spatial discretization of the boundaries and a time-stepping
strategy, simulation of potential wave flow through time is made
possible.

3.1.2. Time integration scheme
The resolution of the BIE at any time instant 𝑡 yields both 𝜙 and

its normal derivative 𝜙𝑛 at every node 𝐱𝐢 of the free surface. Time
integration of free surface boundary conditions is then needed to
advance the solution (geometry alongside with boundary conditions)
in time. This is done following a Mixed Eulerian-Lagrangian (MEL)
method, originally introduced by Longuet-Higgins and Cokelet (1976).
Here another hypothesis is made as to the nature of the flow and
the geometry of the free surface. The latter is indeed assumed to be
single-valued. Since the most complex interface shapes are expected
in the near-field domain treated with CS, this should have a negli-
gible influence on the range of applications of the hybrid method.
Thus we opt for a semi-Lagrangian time updating scheme for 𝛤 , for
which free surface nodes are only allowed to move vertically, which
makes mesh handling easier. The material derivative can then be
written:
𝛿 = 𝛿 = 𝜕 +

𝜕𝜂 𝜕 (7)
5

𝛿𝑡 𝑡 𝜕𝑡 𝜕𝑡 𝜕𝑧
here 𝜂 = 𝐫 ⋅ 𝐤 denotes the vertical free surface elevation, 𝐤 being the
vertical unit vector.

Making use of this formalism in Eq. (6) leads to:
𝛿𝜂
𝛿𝑡

=
𝜕𝜙
𝜕𝑧

−
𝜕𝜙
𝜕𝑥

𝜕𝜂
𝜕𝑥

−
𝜕𝜙
𝜕𝑦

𝜕𝜂
𝜕𝑦

at 𝑧 = 𝜂 (8)

𝛿𝜙
𝛿𝑡

= −𝑔𝜂 − 1
2
∇𝜙 ⋅ ∇𝜙 +

𝜕𝜂
𝜕𝑡

𝜕𝜙
𝜕𝑧

−
𝑝
𝜌

at 𝑧 = 𝜂 (9)

where the atmospheric pressure, 𝑝, is taken without loss of generality
to be zero. It should be noted that (𝜕𝜂∕𝜕𝑥, 𝜕𝜂∕𝜕𝑦) might be rewritten
using components of the outward normal vector on 𝛤𝑓 , 𝐧 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧),
yielding (−𝑛𝑥∕𝑛𝑧,−𝑛𝑦∕𝑛𝑧).

A third-order explicit Runge–Kutta scheme, inspired from that of
Gottlieb (2005), is chosen to integrate Eqs. (8) and (9) in time. Along-
side with 𝜙 and 𝜙𝑛, their respective time derivatives might also be
needed if one wants to use another time-stepping scheme, such as an ex-
plicit Taylor series expansion (again, see Grilli et al., 2001 for example).
Besides this, the computation of forces and moments exerted on struc-
tures is realized through pressure integration on the body’s surface (ob-
tained from Eq. (6)), therefore wave–structure interaction studies also
require the resolution of a second Laplace equation for 𝜙𝑡. As only the
third-order Runge–Kutta scheme is considered in the present work, and
no structure is considered in the potential region, this is not needed.

Additionally, it should be noted that a careful computation of the
tangential derivatives of 𝜙 is needed on 𝛤𝑓 to express certain terms
of (8) and (9). For brevity, the discretized equations are not presented
here. Spatial discretization of the numerical domain boundaries relies
on B-spline elements, described in depth in Harris et al. (2022).

3.2. Description of the NS solver code_saturne

The near-field flow solver in the current work is the NS solver
code_saturne (CS). CS is an open-source, multi-purpose CFD code aimed
at solving the full NS equations, for either incompressible or weakly
compressible flows, through a Finite Volume approach with co-located
variables. Equations are integrated in time according to a predic-
tor/corrector method. The code deals with structured as well as un-
structured meshes and was recently enriched with an algebraic VOF
module for interface-capturing purposes in multiphase simulations.
Numerous turbulence models are available to be used with RANS or
LES (large eddy simulation) formalisms, although in this work no
turbulence model is used. Also, as will be detailed later, structured grids
are used exclusively. The VOF module was added to CS alongside with
the release of version 5.0.0 in 2017. All CS-based developments reported
n this article rely on the stable version 6.0.0.

.2.1. Governing equations
If gravity is the only external force, the NS equations for continuity

nd momentum respectively are:
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0 (10)
𝜕𝜌𝐮
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) = −∇𝑝 + ∇ ⋅ T + 𝜌𝐠 (11)

with 𝜌 the fluid density, 𝐮 the velocity, 𝜌𝐮 the volume momentum
quantity, and T the deviatoric stress tensor while ⊗ is the tensor
product. Note that surface tension is neglected. For simplicity, possible
additional source terms are not taken into account. Assuming a Newto-
nian fluid, T = 𝜇

[

∇𝐮 + ∇𝐮𝑇
]

− 2
3𝜇(∇ ⋅ 𝐮)I, where 𝜇 = 𝜌𝜈 is the dynamic

viscosity.
The VOF method enables the simulation of multiphase flows with a

one-fluid formalism, by describing the phase content of any fluid region
from volume fractions of the different phases. In the context of wave-
induced free surface flows, only two immiscible phases are considered,
namely air and water. Hence, 𝛼 is defined as the volume fraction of air
or void fraction:

𝛼 = void/air volume in a cell (12)
volume of the cell
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Using Eq. (12), linear mixture properties laws are established so that
𝜌 and 𝜇 are continuously defined throughout the fluid. Subscripts 𝑤𝑎𝑡𝑒𝑟
and 𝑎𝑖𝑟 designate respective phases.

𝜌 = 𝛼𝜌𝑎𝑖𝑟 + (1 − 𝛼) 𝜌𝑤𝑎𝑡𝑒𝑟 (13)

𝜇 = 𝛼𝜇𝑎𝑖𝑟 + (1 − 𝛼)𝜇𝑤𝑎𝑡𝑒𝑟 (14)

For all cases considered here, the density values are set to 𝜌𝑤𝑎𝑡𝑒𝑟 = 1025
kg∕m3 and 𝜌𝑎𝑖𝑟 = 1 kg∕m3, while the dynamic viscosity values are
𝜇𝑤𝑎𝑡𝑒𝑟 = 1 × 10−3 Pa s and 𝜇𝑎𝑖𝑟 = 1 × 10−5 Pa s. Assuming that both 𝜌𝑤𝑎𝑡𝑒𝑟
and 𝜌𝑎𝑖𝑟 are constant, Eq. (10) for mass conservation can be simplified
to

∇ ⋅ 𝐮 = 0 (15)
𝜕𝛼
𝜕𝑡

+ ∇ ⋅ (𝛼𝐮) = 0 (16)

For an easier definition of boundary conditions, the relative pressure
𝑝∗ = 𝑝−𝜌𝑎𝑖𝑟𝐠 ⋅𝐱−𝑝0 is introduced, where 𝑝0 is the reference pressure at

fixed arbitrary location. However, for the sake of clarity, 𝑝∗ is denoted
hereafter.

.2.2. Time stepping scheme
The time-stepping method to advance the VOF solution in time

s based on the fractional step scheme of Chorin (1968) and can
e associated with the SIMPLEC scheme (Versteeg and Malalasekera,
007). More details on this topic can be found in Archambeau et al.
2004). This last reference, alongside with CS’s theory guide (Code
aturne development team, 2019), should also be used for an in-
epth description of spatial discretization strategies, and the discretized
quations are not recalled here for brevity.

rediction step. A prediction step is conducted to integrate the momen-
um balance Eq. (11) with an explicit pressure gradient. Mass fluxes are
lso treated explicitly, while an implicit form of the viscous diffusive
erm is used. This first step allows computing a predicted velocity field
∗ for which mass conservation is not necessarily realized, following:

𝐮∗ − 𝐮(𝑛)
𝛥𝑡

− ∇ ⋅
(

(𝜌𝐮)(𝑛) ⊗ 𝐮∗
)

− 𝐮∗∇ ⋅
(

(𝜌𝐮)(𝑛)
)

= −∇𝑝(𝑛) − (𝜌 − 𝜌𝑎𝑖𝑟)𝐠

+∇ ⋅
(

𝜇
[

∇𝐮∗ + ∇(𝐮∗)𝑇
]

− 2
3
𝜇∇ ⋅ 𝐮∗ 1

)

(17)

where 𝛥𝑡 is the fixed or varying time step size, (𝑛) and (𝑛+1) denote the
previous and current time steps respectively. Note that 𝜌 and 𝜇 are
known at time (𝑛) and will only be updated at the end of the time
scheme loop, after the resolution of Eq. (16).

Correction step. In this step, the pressure increment 𝛿𝑝 = 𝑝(𝑛+1) − 𝑝(𝑛) is
computed to enforce mass conservation and thus correct 𝐮∗ to yield the
final field 𝐮(𝑛+1). Considering a form of Eq. (11) in which non-pressure
ight-hand side (RHS) terms are neglected, it becomes:

𝐮(𝑛+1) − 𝐮∗
𝛥𝑡

= −1
𝜌
∇𝛿𝑝 (18)

∇ ⋅ 𝐮(𝑛+1) = 0. (19)

aking the divergence of Eq. (18) and using Eq. (19) leads to the
ollowing Poisson equation:

⋅ 𝐮∗ = ∇ ⋅
(

𝛥𝑡
𝜌
∇𝛿𝑝

)

(20)

from which 𝑝(𝑛+1) then 𝐮(𝑛+1) are deduced.

ime integration of the scalar transport equation. The last step in the
ime-stepping procedure consists in the time integration of the scalar
ransport equation on 𝛼. To that end, an Implicit Euler scheme is
elected.
𝛼(𝑛+1) − 𝛼(𝑛) + ∇ ⋅ (𝛼𝐮)(𝑛+1) = 0 (21)
6

𝛥𝑡
ith 𝛼(𝑛+1) available, it is then possible to get updated fluid properties
𝜌(𝑛+1) and 𝜇(𝑛+1) as well as mass fluxes (𝜌𝐮)(𝑛+1) that are ready to be
sed in the next time step.

To compute the advection term of Eq. (21), various schemes might
e selected in CS, namely the Switching Technique for Advection and Cap-
uring of Surfaces (STACS, Darwish and Moukalled, 2006), the modified-
igh Resolution Interface Capturing scheme (M-HRIC, Muzaferija, 1999)
nd the modified-Compressive Interface Capturing Scheme for Arbitrary
eshes (M-CICSAM, Zhang et al., 2014).

All of them rely on the principle of blending a very compressive
cheme and a high-resolution diffusive scheme, based on a weighting
actor that is a function of the Courant number and other local condi-
ions. The idea is to keep 𝛼 from taking unphysical values outside of
he range [0; 1] while also limiting interface diffusion.

In the current study, a version of the M-CICSAM scheme of Zhang
t al. (2014) is used. Boundary conditions needed to fulfill time inte-
ration are described in detail in Archambeau et al. (2004).

. Two-way coupling on overlapping subdomains

In this work we chose to implement a NT coupling, given that
esolving the Bernoulli equation for the velocity potential on seine3d’s
oupled boundary is not needed, hence making implementation easier,
nd as higher stability of the NT coupling as compared to DT was
eported by Colicchio et al. (2006). Potential and viscous domains are
oupled through the mutual exchange of computational variables at
heir coupled boundaries.

Velocity and free surface position are the exchanged physical vari-
bles, but it should be noted that the latter is not a direct outcome of a
S-VOF simulation, where a free surface capturing scheme is used. By
ontrast, the free surface geometry is explicitly known in the potential
ode. Raw coupling information extracted from one model should thus
e processed and adapted to the other model’s requirements prior to
eing used in the coupling procedure, as both models employ different
patial and temporal discretizations, as well as different representations
f the free surface.

Certain CS computational fields (air fraction and ∕or velocity) may
lso optionally be modified in the computational volume as well,
hrough source terms added to the governing equations, based on
alues extracted in the interior of seine3d’s domain. These optional
ource terms were not found necessary to the accuracy and stability of
ybrid computations, therefore they are not further mentioned in the
escription of the coupling strategy. However, as they are needed for
ave generation and damping in CS-only simulations, a description is
iven in Section 5.3.1 in this context.

.1. Overlapping subdomains

A coupling strategy requiring BEM and VOF domains to partially
verlap is employed in this study, as illustrated in Fig. 1. The associated
verlapping region 𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is bounded by coupling boundaries 𝛤 dc,cs and
n
c,𝑠𝑒𝑖𝑛𝑒3𝑑 with 𝐷 standing for a Dirichlet boundary condition on water
elocity on CS side and 𝑁 for a Neumann boundary condition on the
elocity potential on seine3d side. 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 is the part of 𝛤𝑓,𝑠𝑒𝑖𝑛𝑒3𝑑 that
eceives a free surface position signal from CS during the coupling
rocess. Coupling boundary conditions for this type of coupling are
ecalled in the following system and are described in detail in the next
ections.

𝐮cs = 𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 at 𝑥 = 𝑥cs (22)

cs ⋅ 𝐧𝑠𝑒𝑖𝑛𝑒3𝑑 =
𝜕𝜙
𝜕𝑛

at 𝑥 = 𝑥𝑠𝑒𝑖𝑛𝑒3𝑑 (23)

where 𝑥cs and 𝑥𝑠𝑒𝑖𝑛𝑒3𝑑 designate the location of both ends of the
overlapping region.
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Fig. 1. Coupled domains and related boundaries. Blue CS cells are cells filled with water, while red cells are full of air. Pale blue and pale red cells contain a mix of the two
phases.
4.2. Velocity matching at coupled boundaries

4.2.1. Wave generation in the VOF model
In the collocated finite volume formulation of CS, boundary condi-

tions are needed at the centers of boundary faces. Let 𝛤 dc,cs represent the
set of boundary faces involved in the coupling. With the CS mesh fixed,
boundary face center coordinates are extracted once at the beginning
of a calculation and sent to the coupled seine3d instance. Elements
involved in the construction of this boundary condition are recalled in
Fig. 2. At each CS iteration, water velocity and air fraction boundary
conditions on 𝛤 dc,cs are generated from the variables 𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 and 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑
sent by seine3d (Algorithm 1). 𝛤 dc,cs boundary surface is then split into
two parts, each one corresponding to a given phase of the fluid and
receiving its own set of boundary conditions. A Dirichlet boundary
condition on the air fraction is employed in both phases to set the
free surface vertical position. A linear approximation is applied in the
case of a cell intersecting the free surface position. Free surface in the
cell is, to a first approximation, horizontal, hence the volume of water
in the cell and thus the air fraction value can be deduced from the
distance from the cell floor to 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑 if the latter is above the cell
center in the case of a cell mostly filled with air or from the ceiling
if the cell is mostly filled with water. A Dirichlet boundary condition
on all velocity components in the water phase is used to generate waves
in this study, as in a number of other VOF models. The boundary
value problem would not be complete without a condition on pressure.
A homogeneous Neumann boundary condition on pressure is used in
either part of 𝛤 dc,cs, i.e., a zero normal pressure gradient is imposed
(which is the default for pressure in the Inlet and Symmetry conditions
of CS).

The process is summarized for coupled variables in the following
algorithm, where 𝑖 stands for the CS coupled boundary face of interest,
for which 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑,𝑖 is the vertical position of the free surface. 𝑧𝑖,𝑐𝑒𝑛. is
the adjacent cell center vertical coordinate.

The boundary condition for velocity in the part of 𝛤 dc,cs that lies in
the air phase can be imposed in different ways, but the velocity field
in the air phase is not of direct interest in these simulations, at least
in the outer region of the CS domain. It is therefore not mandatory to
impose a realistic vertical velocity profile at the edge of the domain.
Using a free-slip (i.e., symmetry) boundary condition assigns a zero
7

Algorithm 1 Dirichlet velocity and air fraction boundary condition on
𝛤 dc,cs.

1: for 𝑖 = 1 to 𝑐𝑎𝑟𝑑
(

𝛤 dc,cs
)

do
2: if 𝑧𝑖,𝑐𝑒𝑛. ≤ 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑 then
3: if 𝑧𝑖,𝑐𝑒𝑛. ≥ 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑 − 𝑑𝑧

2 then

4: 𝛼𝑖 ←
𝑧𝑖,𝑐𝑒𝑛.+

𝑑𝑧
2 −𝜂𝑠𝑒𝑖𝑛𝑒3𝑑
𝑑𝑧

5: else
6: 𝛼𝑖 ← 0.0
7: end if
8: 𝐮𝑖 ← 𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 (𝑧 = 𝑧𝑖,𝑐𝑒𝑛.)
9: else

10: Set velocity and air fraction boundary conditions for air
phase

11: end if
12: end for

Dirichlet condition on the velocity component normal to the face and
a homogeneous Neumann condition on its tangential components.

4.3. Velocity in the interior of NWT domain

The velocity computation in the interior of the NWT domain is,
similar to Eq. (3), computed by another integral:

𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 = ∇𝜙(𝐱𝑖) = ∫𝛤

[

𝜕𝜙
𝜕𝑛

(𝐱)𝑄 − 𝜙(𝐱) 𝜕𝑄
𝜕𝑛

]

d𝛤 , (24)

with gradient of the Green’s function given as:

𝑄(𝐱 − 𝐱𝑖) =
(𝐱 − 𝐱𝑖)
4𝜋 𝑟3𝑖

(25)

𝜕𝑄
𝜕𝑛

(𝐱 − 𝐱𝑖) =
1

4𝜋 𝑟3𝑖

[

𝐧 − 3((𝐱 − 𝐱𝑖) ⋅ 𝐧)
𝐱 − 𝐱𝑖
𝑟2𝑖

]

(26)

and which is further described in Fochesato et al. (2005). Using nu-
merical quadrature for Eq. (24) can be prone to instabilities for points
near any CS boundary due to the singular integrals. If the free surface
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Fig. 2. Velocity field considered at the CS coupled boundary, with crosses marking the centers of the boundary faces belonging to 𝛤 d
c,cs where the velocity is sought in CS: (a)

ellow arrows represent the corrected vertical profile of the horizontal velocity 𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 ; (b) calculation of the horizontal internal velocity close to the free surface in seine3d domain,
with red arrows representing the partially unphysical vertical velocity profile of 𝑢𝑠𝑒𝑖𝑛𝑒3𝑑 while dashed ones (as shown in panel (a)) illustrate the corrected velocity profile (by local
extrapolation).
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boundary 𝛤𝑓,𝑠𝑒𝑖𝑛𝑒3𝑑 comes too close to a CS boundary face center be-
onging to 𝛤𝐷

c,cs where the seine3d interior velocity is sought, erroneous
alue is sent to CS as a boundary condition in the current iteration of
he coupling, and the simulation may diverge and fail. As CS boundary
ace centers are supposed to be aligned along vertical lines in a dense
attern – typically 20 cells or more per wave height – compared to
he number of seine3d elements in a vertical, this situation happens
requently during a simulation. Though treatments of singularities by
ethods such as PART of Hayami and Matsumoto (1994) could solve

his problem, a simple but efficient approach based on extrapolation is
sed here. It is then necessary to set a threshold value in seine3d for one

or for all of the components of the internal velocity vector above which
velocity is recalculated by extrapolation from values at underlying CS
face centers. A corrected velocity value is then sent to CS.

To extrapolate a value along the vertical, a polynomial is established
sing a least-squares fit to the velocity values at underlying internal
asis points that is later used for extrapolation. Such extrapolation
s done on all velocity components. It is to be noted that this one-
imensional extrapolation strategy is valid only in the case of a CS

mesh whose face centers are aligned along verticals. In the most general
3D case, such a mesh could be built from the (possibly non-uniform)
vertical extrusion of an arbitrary conformal horizontal 2D mesh. CS
meshes used for coupling should therefore comply with the latter rules.
Fig. 2b illustrates this upwards extrapolation process in the case of an
horizontal internal velocity field featuring spurious values close to the
free surface.

The same type of error occurs for a CS boundary face center from
𝛤𝐷
c,cs located too close to the seine3d domain bottom, in which case a

similar but downwards extrapolation strategy is employed. While these
precautions are sufficient for 2D simulations, this is not the case in 3D.
Indeed, it appeared that in this latter case some coupled CS boundary
face centers may lie too close to the seine3d lateral vertical boundaries,
leading to the same type of errors. It was then decided in this case to
employ a simpler ‘‘nearest neighbor’’ extrapolation method for which
the replacement velocity value is chosen from the closest interior
point of seine3d with a velocity norm lower than the above-mentioned
threshold value.

Singularity errors related to velocity extraction in the interior of
seine3d may also partially be treated from the tuning of some numerical
parameters of seine3d. This model can indeed solve certain singularity
problems with subdivisions of boundary elements allowing adaptive
integration of the BIE kernel. The higher the number of subdivisions
allowed to handle singularities, the closer to seine3d boundaries the
coupled CS boundary face centers may lie without any divergence of
the extracted coupling velocity values. This reduces the need for the
8

aforementioned extrapolation schemes, but at the cost of increased
simulation times for seine3d and therefore for the coupled simulations
as adaptive integration is time-consuming. A trade-off between accu-
racy and speed should then be sought so that subdivisions are used
efficiently. Here a maximum of four subdivisions were considered for
points near a boundary. Details of this algorithm can be seen in Harris
et al. (2022).

4.4. Velocity extraction in CS domain

In this Neumann-type coupling methodology, CS produces a value
for the normal derivative of the velocity potential 𝜕𝜙

𝜕𝑛 on the lateral
coupling boundary 𝛤 nc,𝑠𝑒𝑖𝑛𝑒3𝑑 . As the physical assumptions made in
eine3d are more stringent than those applying in CS, one should make
ure that the seine3d constraints of irrotational flow, negligible viscous
ffects and single-valued free surface are valid in the overlapping
egion. This predicament governs the location and horizontal extension
f 𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝. Assuming these requirements are met, we can admit that
he CS velocity known at the location of a seine3d boundary node is
hat of a potential flow. Its projection along the normal direction to
he local BEM element produces a Neumann boundary condition on the
otential.

The seine3d surface mesh moves with the fluid in a semi-Lagrangian
ashion. Thus, contrary to CS boundary face centers belonging to 𝛤 dc,cs
here seine3d velocity is calculated and whose position is fixed and
nown at the beginning of the simulation, velocity extraction in CS is
one in locations varying with time. This poses issues of computational
ost to the coupling algorithm if not implemented adequately. How-
ver, cell selection based on geometrical criteria is easily realized in
S and is described in Fig. 3.

An array containing the coordinates of all the coupled seine3d nodes
s sent to CS at every iteration of the coupling. A box of constant
imensions is built in the CS domain around each seine3d node, the
atter coinciding with the geometrical center of the box. Cells with

center inside the box are selected, and the associated velocity 𝐮cs
alues, stored at cell centers, are saved, along with cell center coor-
inates. There may be several selected cells for each seine3d node, and
ultiple seine3d nodes associated to the same CS cell in the case of 2D

ertical simulations. Indeed, we place multiple nodes in the width of
seine3d domain even for two-dimensional calculations, whereas one

ell occupying the entire width is sufficient for CS in that case.
Because of the absence of a bijection between seine3d nodes and

S cells, and because CS cell extraction functions do not preserve cell
rder, arrays containing CS cell center coordinates and corresponding
elocity values are sent back to seine3d in arbitrary order of the cells. It
s to be noted that in the current state of the coupling methodology,
o gradient calculation is conducted for coupled velocity extracted
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Fig. 3. Boundary condition on the velocity potential for the seine3d in the overlapping region, with crosses marking the centers of CS cells in the vicinity of a given seine3d node.
S cells too close to the free surface to yield a correct velocity value bear red crosses and a rectangle stands for the selection box centered on the seine3d node: (a) interpolation
cheme for matching conditions; (b) demonstration of mismatch of the vertical profile of normal velocity, in yellow (𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 ⋅ 𝐧).
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rom CS. Then, for every coupled seine3d node, the distance to every
xtracted CS cell center is computed, and 𝐮cs is taken as the value at
he closest cell center. Such nearest neighbor approximation scheme
s first-order accurate in CS mesh cell size. This sorting operation is
ealized in a single MPI process of seine3d (the one with root rank),
o it is a blocking step for the simulation and its cost is therefore not
egligible. Selecting the lowest possible number of CS cells using the
mallest selection box is then of central interest. In practice, the choice
f the selection box size is left to the user, and it is straightforward
n the case of a uniform Cartesian grid, for which the box should be
lightly larger than a cell so that CS cells are always located.

VOF models are also known to suffer from the occurrence of spuri-
us velocities close to the free surface. Therefore, if a coupled seine3d
ode lies in the area of mixed phases in CS domain, as illustrated by
he red crosses in Fig. 3, the velocity extracted near its location may
e nonphysical. If this is the case, this will surely lead to the failure
f the simulation. To avoid such an issue, velocity is not extracted in
he region of mixed phases, but a large dummy value is rather sent
o seine3d. Unless stated otherwise, this was taken to be all points
ithin 3𝛥𝑧, but early tests showed that this value depends on the

elected air fraction advection scheme so may need to be modified if
dapted for other NS solvers. In turn, when seine3d receives such a
ummy value, a vertical extrapolation procedure similar to that used
or the internal velocity transmitted to CS is conducted. Basis points
hen needed for a second-order polynomial regression are seine3d nodes
elonging to 𝛤 nc,𝑠𝑒𝑖𝑛𝑒3𝑑 and located beneath the current node. Algorithm
summarizes the procedure. threshold value is only used to detect large
ummy values requiring local extrapolation. Once 𝐮cs is known at all

nodes located on 𝛤 nc,𝑠𝑒𝑖𝑛𝑒3𝑑 , it is projected on the local normal vector to
generate a Neumann boundary condition on the potential.

Algorithm 2 Neumann boundary condition on 𝛤 nc,𝑠𝑒𝑖𝑛𝑒3𝑑 .

1: for 𝑖 = 1 to 𝑐𝑎𝑟𝑑
(

𝛤 nc,𝑠𝑒𝑖𝑛𝑒3𝑑
)

do
2: Calculate distances from the current node to every extracted CS

cell center
3: Get closest CS cell center and associated 𝐮𝐶𝑆,𝑖
4: if 𝐮𝐶𝑆,𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
5: Extrapolate velocity from underlying nodes
6: end if
7:

(

𝜕𝜙
𝜕𝑛

)

𝑖
← 𝐮cs,𝑖 ⋅ 𝐧𝑖

8: end for

4.5. Free surface matching in the overlapping region

4.5.1. A need for matching free surfaces in 𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝
The velocity exchange procedure described above does not guar-

ntee the matching of free surfaces in 𝛺 . On the CS side of the
9

𝑜𝑣𝑒𝑟𝑙𝑎𝑝
overlapping region, free surface information on 𝛤 dc,cs is received from
seine3d along with velocity data as the velocity profile imposed to
the water phase on the boundary is of limited vertical extent. On the
opposite, velocity extraction in CS cells located near 𝛤 nc,𝑠𝑒𝑖𝑛𝑒3𝑑 nodes
does not incorporate any free surface position information, and velocity
values are sought in the CS domain without any restriction on the phase
in which extraction is realized. An additional operation on the free
surface of seine3d is then needed to ensure interface continuity between
the viscous and potential domains, which was found to be a necessary
condition for the accuracy and stability of coupled simulations.

If free surface positions 𝜂cs(𝐱cs) and 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑 (𝐱cs) differ on the CS side
f 𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝, the seine3d vertical velocity profile specified on 𝛤𝐷

c,cs does not
atch the geometry of the water phase in the interior of the CS domain.
s the imposition of this velocity profile comes along with that of a
irichlet boundary condition on the air fraction on 𝛤 dc,cs as described

in 4.2.1, free surface mismatching leads to an artificial jump in the
air fraction field, either positive or negative, causing a spurious free
surface flow. Such an air fraction jump and subsequent gravity-driven
flow deteriorate the accuracy of simulations but were found seldom
problematic for their stability in preliminary tests.

Conversely, a free surface mismatch on the seine3d side of the
overlapping region quickly produces a growing instability in seine3d.
Coupled nodes belonging to 𝛤 nc,𝑠𝑒𝑖𝑛𝑒3𝑑 may happen to be located in the
air phase of the viscous domain, or at least in the area of mixed phases.
Because of the incompressible nature of the flow simulated with the
VOF method, and due to the high-density ratio between phases, the
velocity in the air phase may be several orders of magnitude higher
than in the dense phase. If a seine3d node where normal velocity is
needed is located in the air phase, the velocity value it gets from CS
can largely exceed velocity values in the rest of the potential domain,
leading to a divergence in the resolution of the Laplace equation and
consequently to the failure of the calculation in seine3d. If the same
node lies in the region of mixed phases near the free surface, the
velocity may still take spurious values – which are common in VOF
simulations – triggering the same type of instability.

One thus has to make sure that the free surface position in seine3d
and the air fraction field in CS remain consistent in the overlapping re-
gion, with a special focus near the endpoint of each domain. It appears
that no special treatment is necessary on the CS side of 𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝 and that
the air fraction jump can be avoided with a cautious selection of the
coupling parameters that will be presented in the coming sections. The
interface position in seine3d, on the contrary, has to be relaxed towards
the estimated location of the interface in CS over the whole extent of
the overlapping region.

4.5.2. Capturing the free surface in CS
As mentioned, the free surface position is not explicitly known
in simulations conducted with the algebraic VOF module of CS. The
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region of mixed phases around the free surface is smeared over a few
cells even with the use of an interface recompression method. Taking
advantage of the fact that the free surface topology in the overlapping
area satisfies assumptions made in seine3d, in particular it has to be
single-valued, a method to estimate the vertical position of the free
surface in CS is devised. For every coupled seine3d node where the
free surface vertical position is sought in CS, we consider the complete
fluid column extending vertically from the position of the associated CS
cell, whose center is the closest to the seine3d node of interest. The free
surface vertical location 𝑧𝑓c,cs is approximated by the ratio of the water
volume in the column to the total volume of the column. Computing
volumes by vertical integration gives:

𝜂cs =
∫ ℎ𝑐
−ℎ (1 − 𝛼)𝑑𝛺

∫ ℎ𝑐
−ℎ 𝑑𝛺

(27)

here 𝛼 is the air fraction, ℎ is the depth, ℎ𝑐 the height of the CS
omain above the resting free surface (up to the ceiling) and 𝑑𝛺 is
n infinitesimal volume.

As the meshes used for coupled simulations in CS are structured
n the vertical direction, i.e., they can be obtained from the vertical
xtrusion of an arbitrary horizontal 2D conformal mesh, a column of
ells is also a fluid column. Calculation of water volume and total
olumn volume is then straightforward and Eq. (27) becomes:

cs =

∑

𝑗∈𝐶𝑖

(1 − 𝛼𝑗 )|𝛺𝑗 |

∑

𝑗∈𝐶𝑖

|𝛺𝑗 |
(28)

or every cell 𝑗 of volume |𝛺𝑗 | in the fluid column 𝐶𝑖 centered on cell
. This way 𝜂cs can take any value within the continuous range [−ℎ;ℎ𝑐 ].

.5.3. Free surface relaxation in seine3d
rinciple of free surface relaxation. 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 is modified to conform

with the free surface solution 𝜂cs in 𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝 built in CS as described
in Section 4.5.2 (see Fig. 1). Time-stepping in seine3d follows a semi-
Lagrangian rule, thus only the vertical coordinate of the seine3d nodes
belonging to 𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is modified. Relaxation refers to the fact that the
pure potential free surface solution which has just been computed in
seine3d is combined with a free surface signal extracted from the CS air
fraction field at the same time instant to produce a relaxed solution.
This ensures free surface matching at the seine3d side of the overlapping
region at any time. Following the time stepping stage in seine3d, the
vertical position of each node 𝑖 belonging to 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 is replaced by
the weighted sum of seine3d free surface position and CS free surface
solution 𝜂cs, as:

𝑧 ← (1 − 𝑅)𝑧 + 𝑅𝜂cs on 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 , (29)

where 𝑧 is the current vertical coordinate while 𝜔 is the relaxation
weight, varying between 0 at 𝐱cs and 1 at 𝐱𝑠𝑒𝑖𝑛𝑒3𝑑 over the length of
𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝. Different spatial functions may be used for 𝜔 to allow a smooth
relaxation. The relaxation strategy is illustrated in Fig. 4, where a
yellow line marks the corrected position of the free surface.

One drawback of this relaxation is that mass conservation is no
longer ensured in the coupled seine3d domain, as an extra mass flux
originates from the changes made to the interface geometry in 𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝.
Its magnitude grows with the gap between the target value 𝜂cs and
the geometry of 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 prior to relaxation. The accumulated errors
might lead to the failure of the coupled simulation. To avoid this and to
make sure that free surface boundary conditions are still satisfied after
the interface relaxation step, the velocity potential on 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 should
be modified accordingly, as described in more detail in Section 4.6.4.

Relaxation weight. Different spatially varying functions, or blending
functions, can be used for 𝜔 in Eq. (29), such as linear, exponential,
or third-order polynomial. The associated weights are given hereafter,
10
setting 𝑏 = 𝑥−𝑥cs
𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝

with 𝑥 the current horizontal coordinate. Relaxation
eights were based on third-order cubic polynomials:

ℎ𝑒𝑟𝑚. = 𝑏2(3 − 2𝑏) (30)

though exponential variation has also been tested, the change in
unction seems to have no significant impact on the simulation results.

thorough comparison of the performance of blending functions was
evertheless not considered in this study.

elaxation of the velocity potential on the free surface. As the position of
ree surface nodes is modified, so should be the value of the velocity
otential 𝜙 at these nodes, as follows:

← (1 − 𝑅)𝜙 + 𝑅𝜙𝑟𝑙𝑥 on 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 (31)

he potential has no physical meaning in the NS simulation, thus its
orrected value 𝜙𝑟𝑙𝑥 should be built from other seine3d and CS variables.
efore explaining how 𝜙𝑟𝑙𝑥 is obtained, we should introduce the time-
tepping strategy used for coupled simulations. This is the subject of
he next section, in which 𝜙𝑟𝑙𝑥 is described.

.6. Advancing coupled simulations in time

The extraction and processing of coupling variables as well as the
mposition of coupling boundary conditions having been detailed in
revious sections, we now explain how time stepping is done in coupled
EM-VOF simulations.

.6.1. Using different time step sizes for each code
The time step size in each code is governed by physical and numeri-

al considerations, but primarily through the Courant–Friedrichs–Lewy
CFL) number. Notably, spatial discretization differs significantly be-
ween CS and seine3d. While in the former a target number of 20 cells
long the vertical direction is employed to cover the height of the
eference wave, the latter only requires a smaller number (typically 4 or
lightly more) of boundary elements to occupy the whole water column
nder the wave. The need for limited aspect ratios of CS cells, as well
s seine3d boundary elements, further sets constraints on the number of
ells or boundary elements per reference wavelength in each code. Such
ifferences in spatial discretization call for the use of different time-step
izes, so that there is flexibility to set the CFL numbers in each code
ndependently. Using CS and seine3d with respective sets of parameters
lose to optimal values is indeed a necessary condition for the global
fficiency of the coupling strategy. As a result, the CS time step size
𝑡cs has to be kept smaller than its potential counterpart 𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑 . We
efine the time step ratio 𝑁𝛥𝑡 as:

𝛥𝑡 =
𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑
𝛥𝑡cs

(32)

Both models are synchronized when the coupled computation time
reaches an integer multiple of 𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑 , that is to say that physical
variables of interest are exchanged through MPI communications every
𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑 seconds. seine3d is thus waiting for CS calculations over sub
ime steps (of size 𝛥𝑡cs) to end during most of the computational time.

.6.2. Interpolation between time steps
CS boundary conditions are needed at time 𝑡(𝑛cs) to advance the

S solution up to 𝑡(𝑛cs+1) where 𝑛cs enumerates the CS time stepping
ub-stages between successive synchronization time instants 𝑡(𝑛) and
(𝑛+1).
(𝑛cs) = 𝑡(𝑛) + 𝑛cs𝛥𝑡cs ∀ 𝑛cs ∈ {0, 𝑁𝛥𝑡 − 1} (33)
(𝑛cs) = 𝑡(𝑛+1) if 𝑛cs = 𝑁𝛥𝑡 (34)

Inlet Dirichlet boundary conditions on velocity and air fraction on 𝛤 dc,cs
are obtained from interpolations of 𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 and 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑 between 𝑡(𝑛) and
𝑡(𝑛+1). 𝐮(𝑛cs) and 𝜂(𝑛cs) stand for values interpolated at time 𝑡(𝑛cs).
𝑠𝑒𝑖𝑛𝑒3𝑑 𝑠𝑒𝑖𝑛𝑒3𝑑
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Fig. 4. Free surface relaxation in seine3d. The yellow line represents the position of seine3d free surface after correction.
Fig. 5. Main stages and information fluxes of the coupling time-stepping scheme for marching from time 𝑡(𝑛) to 𝑡(𝑛+1) = 𝑡(𝑛)+𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑 , with details of each stage given in Section 4.6.3.
ed lines illustrate time-stepping operations while the blue ones show MPI communications between the coupled programs. The top axis stands for seine3d while the bottom axis
epresents the operations conducted in CS.
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F
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nterpolation schemes of various orders may be employed, using values
f 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑 and 𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 at different seine3d time instants.

If values of 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑 and 𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 are stored at additional time instants
𝑛−1) and (𝑛−2), a higher-order interpolation procedure is established,
ermitting a better rendering of the nonlinear nature of the time
volution of wave kinematics. Such a scheme is more accurate than the
inear one for a given time step size under certain assumptions, but it
ay lead to greater interpolation errors in the case of large time-steps.

t also uses a larger amount of computer memory as physical variables
re saved at four time instants, as opposed to two in the linear case. As
onstant time-step sizes are used exclusively in the coupling procedure,
he Lagrange polynomial of the 3rd degree is retained that is easily
mplemented and expressed here in terms of the same variable 𝛽.

The number of coupling seine3d nodes being limited to relatively
mall values, storing seine3d coupling velocity profile and free surface
unction at 4 time instants is not very memory-consuming. Besides,
𝑡𝑠𝑒𝑖𝑛𝑒3𝑑 values were found to remain in a range where high-order
olynomial interpolation is more accurate than the linear one. It is
o be noted that the choice of 𝑁 is the result of a balance between
11

𝛥𝑡
ccuracy (limited interpolation errors) and efficiency (sufficiently high
FL number in seine3d), and as such is a crucial parameter of the
oupling strategy.

.6.3. Detailed description of the time-stepping
The time-stepping procedure is summarized in the flow chart of

ig. 5, with roman figures enumerating the different stages, described
elow:

stage I: the seine3d free surface conditions are advanced in
time from 𝑡(𝑛) to 𝑡(𝑛+1) following the explicit 3𝑟𝑑 -order Runge–
Kutta scheme described in Section 3.1.2. The geometry of the
seine3d domain is updated, and so are 𝛤 n,(𝑛+1)c,𝑠𝑒𝑖𝑛𝑒3𝑑 and 𝛤 (𝑛+1)

𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 .
To complement the set of boundary conditions of the potential
problem at time 𝑡(𝑛+1), a Neumann boundary condition on the
velocity potential on 𝛤 n,(𝑛+1)c,𝑠𝑒𝑖𝑛𝑒3𝑑 is built from a CS vertical velocity
profile extracted at time step 𝑡(𝑛):

𝜕𝜙 (𝑛+1)
= 𝐮(𝑛) ⋅ 𝐧 on 𝛤 n,(𝑛+1) (35)
𝜕𝑛 cs 𝑠𝑒𝑖𝑛𝑒3𝑑 c,𝑠𝑒𝑖𝑛𝑒3𝑑
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𝐮(𝑛)cs is available as an output of the previous coupling iteration. It
should be noted that the velocity profile 𝐮(𝑛)cs has been extracted
(and is therefore known) at the previous location of the coupled
seine3d nodes, i.e. on 𝛤 n,(𝑛)c,𝑠𝑒𝑖𝑛𝑒3𝑑 . We assume that this holds on
𝛤 n,(𝑛+1)c,𝑠𝑒𝑖𝑛𝑒3𝑑 . Then, the potential problem is solved at time 𝑡(𝑛+1) by
seine3d.
stage II: the internal velocity 𝐮(𝑛+1)𝑠𝑒𝑖𝑛𝑒3𝑑 is extracted in the seine3d
domain. Spurious velocity values are replaced with extrapolated
ones, as explained in Section 4.3. Then, 𝐮(𝑛+1)𝑠𝑒𝑖𝑛𝑒3𝑑 and 𝜂(𝑛+1)𝑠𝑒𝑖𝑛𝑒3𝑑 are
sent to CS in an MPI communication operation.
stage III: the CS solution is advanced in time from 𝑡(𝑛) to 𝑡(𝑛+1)

through 𝑁𝛥𝑡 sub time steps with the inlet boundary conditions
described in Section 4.6.2.
stage IV: at time 𝑡(𝑛+1), CS free surface data 𝜂(𝑛+1)cs at cells close
to free surface nodes belonging to 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 is sent to seine3d.
stage V: the free surface position in seine3d is relaxed towards
the CS solution, such that free surfaces matching is ensured at
𝑥𝑠𝑒𝑖𝑛𝑒3𝑑 . Thus, 𝛤 n,(𝑛+1)c,𝑠𝑒𝑖𝑛𝑒3𝑑 becomes 𝛤 n,(𝑛+1),𝑟𝑙𝑥c,𝑠𝑒𝑖𝑛𝑒3𝑑 , and 𝛤 (𝑛+1)

𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 is now
𝛤 (𝑛+1),𝑟𝑙𝑥
𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 . The velocity potential can be relaxed accordingly,

following the procedure explained in Section 4.5.3.
stage VI: the coordinates of seine3d boundary nodes on 𝛤 n,(𝑛+1),𝑟𝑙𝑥c,𝑠𝑒𝑖𝑛𝑒3𝑑
are sent to CS. The velocity 𝐮(𝑛+1)cs close to those nodes in CS
domain is extracted and sent back to seine3d to generate an
updated Neumann boundary condition at 𝑡(𝑛+1) as follows:

𝜕𝜙
𝜕𝑛

(𝑛+1)
= 𝐮(𝑛+1)cs ⋅ 𝐧𝑠𝑒𝑖𝑛𝑒3𝑑 on 𝛤 n,(𝑛+1),𝑟𝑙𝑥c,𝑠𝑒𝑖𝑛𝑒3𝑑 (36)

stage VII: in seine3d, the boundary integral problem at time 𝑡(𝑛+1)

is solved for the second time.

This two-way coupling strategy is similar to the one described in Kim
et al. (2010) and theoretically enables wave propagation in any direc-
tion.

4.6.4. Calculation of 𝜙𝑟𝑙𝑥
With the newly introduced time-stepping exponents, Eq. (29) can

e written as:
(𝑛+1) ← (1 − 𝑅)𝑧(𝑛+1) + 𝜔𝜂(𝑛+1)cs on 𝛤 (𝑛+1)

𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 (37)

s 𝛤 (𝑛+1)
𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 is turned into 𝛤 (𝑛+1),𝑟𝑙𝑥

𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 . As stated in , potential relaxation
hrough 𝜙(𝑛+1)

𝑟𝑙𝑥 is needed so that the influence of the free surface
elaxation on the potential distribution on seine3d boundaries can be

applied. 𝜙𝑟𝑙𝑥 is sought at time 𝑡(𝑛+1) and Eq. (31) becomes:

𝜙(𝑛+1) ← (1 − 𝑅)𝜙(𝑛+1) + 𝜔𝜙(𝑛+1)
𝑟𝑙𝑥 on 𝛤 (𝑛+1),𝑟𝑙𝑥

𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 (38)

At stage 𝑉 of the above coupling procedure, the dynamic free surface
boundary condition is integrated again, this time in a single step and
following a centered scheme:

𝛿𝜙
𝛿𝑡

(𝑛)
=

𝜙(𝑛+1)
𝑟𝑙𝑥 − 𝜙(𝑛−1)

2𝛥𝑡
(39)

= −𝑔𝜂(𝑛) − 1
2

(

∇𝜙(𝑛)
𝑟𝑙𝑥

)2
+

𝜕𝜂(𝑛)𝑟𝑙𝑥
𝜕𝑡

𝜕𝜙(𝑛)
𝑟𝑙𝑥

𝜕𝑧
(40)

thus

𝜙(𝑛+1)
𝑟𝑙𝑥 = 𝜙(𝑛−1) + 2𝛥𝑡

(

−𝑔𝜂(𝑛) − 1
2

(

∇𝜙(𝑛)
𝑟𝑙𝑥

)2

+
𝜕𝜂𝑟𝑙𝑥
𝜕𝑡

(𝑛) 𝜕𝜙𝑟𝑙𝑥
𝜕𝑧

(𝑛)
)

where 𝑧 = 𝜂(𝑥, 𝑦, 𝑡(𝑛)) (41)

ree surface velocity is rewritten as follows:

𝜙(𝑛)
𝑟𝑙𝑥 = ∇ℎ𝜙

(𝑛) +
𝜕𝜙(𝑛)

𝑟𝑙𝑥
𝜕𝑧

𝐞𝐳 (42)

where ∇ℎ stands for the horizontal gradient and 𝐞𝐳 is the vertical unit
vector.
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Every RHS term in Eq. (41) is known explicitly except 𝜕𝜂(𝑛)𝑟𝑙𝑥
𝜕𝑡 and

𝜕𝜙(𝑛)𝑟𝑙𝑥
𝜕𝑧 . Using another centered scheme to solve the kinematic free surface

boundary condition and obtain 𝜕𝜂𝑟𝑙𝑥
𝜕𝑡

(𝑛)
, it becomes:

𝜕𝜂𝑟𝑙𝑥
𝜕𝑡

(𝑛)
=

𝛿𝜂𝑟𝑙𝑥
𝛿𝑡

(𝑛)
=

𝜂(𝑛+1)cs − 𝜂(𝑛−1)

2𝛥𝑡
(43)

=
𝜕𝜙𝑟𝑙𝑥
𝜕𝑧

(𝑛)
−

𝜕𝜙
𝜕𝑥

(𝑛) 𝜕𝜂
𝜕𝑥

(𝑛)
−

𝜕𝜙
𝜕𝑦

(𝑛) 𝜕𝜂
𝜕𝑦

(𝑛)
(44)

from which the value of 𝜕𝜙𝑟𝑙𝑥
𝜕𝑧

(𝑛)
is also deduced.

This method is inspired by that described in Kim et al. (2010)
to relax the velocity potential on 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 . Other methods include
not relaxing the free surface velocity potential, or using free surface
velocity extracted in the viscous model to set the value of ∇𝜙(𝑛)

𝑟𝑙𝑥, or

that of its vertical component 𝜕𝜙(𝑛)𝑟𝑙𝑥
𝜕𝑧 only, as in Kemper et al. (2019).

In this latter work, the vertical velocity close to the interface extracted
in the viscous code is used as vertical velocity at the free surface in
the potential code. From time integration of the dynamic free surface
boundary condition, a corrected value of the free surface potential is
obtained. Free surface horizontal velocity in the VOF calculation is
however not transmitted to the potential calculation. It is to be noted
that extracting valid values for vertical water velocity in the viscous
code at the free surface is not an easy task. It has been tested in the
current coupled model but was found to be less accurate and stable
than the above-described method.

4.7. Parallelization of coupled simulations

4.7.1. MPI communicator for coupling
Both potential and viscous numerical codes that are coupled in this

work allow parallel simulations when used alone. They are adapted
to high-performance computing on large computers with distributed
memory, and coupled simulations should exhibit the same behav-
ior. The Message Passing Interface (MPI) protocol is used with this
goal in mind. Each application operates in a MPI communicator, or
intracommunicator, allowing point-to-point and collective communi-
cations between processes owned by the application. In this case,
allowing the exchange of variables between CS and seine3d amounts
o building a new global communicator or extra-communicator from
he union of both applications’ communicators. This is done conve-
iently with ad-hoc MPI functions from the Parallel Location and
xchange (PLE) library (Fournier, 2020), coming with CS, that had to
e adapted in seine3d. Exchanges of coupling variables are exclusively
ealized with point-to-point MPI communications in the newly built
oupling (global) communicator. Such communications may be sequen-
ial if only root processes are involved, or parallel. Communicators and
ommunications are illustrated in Fig. 6.

.7.2. Sequential or parallel coupling communications
The choice between sequential or parallel coupling communications

ostly depends on the characteristics of CS and seine3d and on the
ocation of the variables of interest in the applications.

eine3d → CS communications. In CS, a domain decomposition ap-
roach is used to split the computational domain between MPI pro-
esses. Each process owns a part of the field variables arrays. Besides
hat, as the CS grid is fixed, the location of cells centers on 𝛤 dc,cs,
here the values of 𝐮𝑠𝑒𝑖𝑛𝑒3𝑑 and 𝜂𝑠𝑒𝑖𝑛𝑒3𝑑 are sought, are known from the

tart of the simulation. Therefore, the CS processes that will receive
hese values from seine3d are identified at the initialization stage of
he coupled calculation. Point-to-point communications are established
etween those CS processes and selected seine3d processes. Indeed
he velocity at any internal point in 𝛺𝑠𝑒𝑖𝑛𝑒3𝑑 and the position of any
oundary free surface node belonging to 𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 may be respectively
ccessed or computed from any seine3d process. Coordinates of the
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Fig. 6. MPI communicators and communications realized at each synchronized
(seine3d) time step. Red boxes stand for seine3d processes while blue ones stand for
CS processes. Hatched boxes represent root processes. Only processes with MPI ranks
ranging from 1 to 3 are directly involved in the coupling. MPI communications at
initialization are not shown for the sake of clarity.

above-listed coupled CS cell centers are then gathered at CS’s root
process once and sent to seine3d’s root process, from where they are
equally scattered to an arbitrary selection of seine3d processes and
stored as internal points or used to create free surface gauges, allowing
point-to-point MPI communications in parallel.

𝑠𝑒𝑖𝑛𝑒3𝑑 ← CS communications. As the grid of seine3d is moving, it is
not possible to send the location of nodes where 𝐮cs and 𝜂cs should
be extracted to CS only once at the beginning of the simulation. This
information is to be sent at every synchronization seine3d time step,
after the free surface relaxation stage and before the second resolution
of the boundary integral problem. CS cells extraction is explained in
Section 4.4. Coupled seine3d node coordinates 𝐱𝛤 nc,𝑠𝑒𝑖𝑛𝑒3𝑑 and 𝐱𝛤𝑓c,𝑠𝑒𝑖𝑛𝑒3𝑑 are
therefore gathered in seine3d’s root process and sent to CS’s root pro-
cess, where they will be broadcast to every process. This is a sequential
procedure, as only the root processes of the coupled applications are
involved in MPI communications.

4.8. Coupling several instances of each code

So far, emphasis has been put on the most simple coupling case
of one instance of CS and one instance of seine3d, in the context of
2D vertical applications. One of the goals of this study is to develop a
flexible tool, adapted to a wide range of wave simulation applications.
To that end, it was decided to allow the coupling of several instances of
the applications. One CS application may indeed exchange simulation
variables with several instances of seine3d, and the other way around.
Currently accepted topologies include vertical lines, for 2D vertical
couplings and vertical planes for 3D simulations.

Couplings are built as instances of C++ classes of seine3d and 𝐶
structures of CS. It was intended to make the most of the object-
oriented nature of seine3d to allow future improvements of the coupled
model. In the following work and applications, we make extensive use
of the coupling configuration seine3d-CS-seine3d, where the CS model
is applied at a local scale around a marine structure.

5. Coupled 2DV regular waves simulation

5.1. General setup

The simulation of 2DV nonlinear regular waves is a natural and
necessary step towards the calculation of 3D wave–structure interaction
which is the final aim of this work. The experimental outputs of
the WAS-XL (Wave loads and soil support for extra large monopiles)
13
Table 1
Characteristics of simulated waves with steepness 𝜖 = 1∕40 and ℎ = 27m.
T (s) 𝜆 (m) H (m) ℎ∕𝜆

9 114.45 2.86 0.236
12 171.37 4.28 0.158
15 226.67 5.75 0.119

campaign Dadmarzi et al. (2019) are used as reference results for the
computation of regular wave forces on a vertical cylinder representing a
monopile OWT foundation. To set up the 2DV study detailed in the cur-
rent section, we choose to use WAS-XL incoming waves parameters and
domain geometry to validate the generation, propagation, transmission
from one coupled domain to the other, absorption of periodic waves,
and choose the spatial and temporal discretizations in both models, as
well as those related to the coupling parameters 𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (the length the
of overlapping region) and 𝑁𝛥𝑡 (time step ratio), with the intention of
reusing most of them for 3D studies in Section 6.

As generation and absorption of regular waves are conducted in
potential domains exclusively, correct absorption parameters in seine3d
should be found before further tests. A quick analysis is realized and
presented with this aim in mind. The nonlinear wave theory applied to
generate waves is the so-called Stream-Function (SF) method, or more
precisely the Fourier series approximation of the SF theory of Dean
(1965), already implemented in seine3d. A depth-uniform horizontal
current is added to the incident wave kinematics so that the net mass
flux, averaged over a wave period, is zero, following Grilli and Horrillo
(1997), removing the Stokes’ drift. Most coupled simulation results
presented in this section are conducted with the lowest wave steepness
𝜖 = 𝐻∕𝜆 = 1∕40 = 2.5% encountered in Dadmarzi et al. (2019),
where 𝐻 and 𝜆 are wave height and length respectively (Table 1).
Such a definition of wave steepness slightly differs from the one used
in Dadmarzi et al. (2019). In the WAS-XL campaign, steepness is
defined as first-order wave height divided by wavelength. It seems that
the use of such a definition involving the first-order wave height and
not the total wave height has to do with constraints related to the wave-
making device employed in the wave basin. In Dadmarzi et al. (2019)
however, it is stated that a second-order correction of the piston motion
is applied, to better account for the nonlinearity of the generated wave.

In the current coupled methodology, fully-nonlinear wave kinemat-
ics are imposed at the inlet boundary of the seine3d upstream domain as
a Neumann condition (i.e., 𝜕𝜙∕𝜕𝑥 = 𝑢𝑖𝑛𝑝𝑢𝑡) to generate waves, therefore
steepness is computed as 𝜖 = 𝐻∕𝜆. Note that the simulated waves all
belong to the intermediate depth regime, with 1∕20 < ℎ∕𝜆 < 1∕2.
This 2DV study also serves the goal of determining the hybrid model
limits, in particular in terms of wave steepness, so some results with
the highest steepness used in Dadmarzi et al. (2019) (𝜖 = 1∕22 ≈ 4.5%)
are also presented.

5.1.1. Design waves from the WAS-XL campaign
To begin with, numerical simulations are set with the lowest depth

value of 27m and the smallest steepness 𝜖 = 1∕40. Wave height
and length are specified following the above-mentioned SF algorithm
of Dean (1965), in which no closed-form relation exists to link these
two parameters. We then try a few subsequent combinations of wave
height and length to roughly converge toward the desired steepness
value, following a trial-and-error approach. Numerical results are ob-
tained at full scale, while a 1:50 Froude scaling is selected for the
models used in wave basin tests. Three wave periods of 9, 12, and 15
s are chosen that cover most of the range of the experimental wave
periods, ranging from 6 to 16.5 s in Dadmarzi et al. (2019).

5.1.2. Numerical domains
The hybrid numerical domain employed for the coupled simulations

is depicted in Fig. 7. It is essentially a projection of the 3D domain
featuring the monopile on a vertical plane. In the WAS-XL experimental
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etup, the distance between the monopile located at 𝑥 = 0 m and the
ave generation side is specified at 𝑥 = −763m. Thus this fixed-length
pstream generation and propagation region represents a variable num-
er of wavelengths, depending on the wave period considered. For the
ongest wave with 𝑇 = 15 s (illustrated in Fig. 7), it still amounts to
ore than 3 wavelengths, which is sufficient to accurately generate
aves in the potential domain seine3d 1. As can also be seen in the

igure, the upstream region is mainly occupied by the seine3d 1 domain,
he CS domain being restricted to one wavelength centered on 𝑥 = 0
.

Similarly, the distance from the monopile to the beginning of the
bsorbing beach is set to 3 wavelengths, large enough to propagate and
bsorb waves – mainly in the potential domain seine3d 2 – with limited
purious interactions in 3D simulations between wave diffraction by
he vertical cylinder and possible wave reflections on the downstream
oundary of the domain seine3d 2. As stated below, a one wavelength-
ong region at the downstream tip of the seine3d 2 domain is used to
bsorb waves going out of the domain, so a distance of 3𝜆 is dedicated
o wave propagation downstream of the virtual position of the cylinder.

.2. Parameter choice in seine3d

Before applying the coupling methodology to simulate regular
aves, it is necessary to ensure that seine3d alone can generate, propa-
ate, and absorb traveling waves. The code should also prove capable
f providing correct vertical profiles of velocity, thus anticipating their
ransmission to a CS instance.

.2.1. Wave damping in seine3d
The major aspects of the wave-damping strategy are described in

his section. The calculation of the reflection rate of the damping region
s then explained, and an attempt is made to minimize it.

umerical damping strategy. The damping device made of a parabolic
bsorbing beach associated with wave dampers in the tank facility is
umerically recreated in the downstream potential domain seine3d 2
ith the help of a damping region. It is based on ad-hoc terms 𝐷𝜂 and
𝜙 added to the RHS of Eq. (8) and (9), as presented in Section 3.1. As

he time-marching strategy selected in seine3d is explicit, the damping
erms are built from geometrical and kinematic values at current (𝑛)
ime instant. The damping terms are then:

𝐷𝜂 = −𝛾𝑎𝑏𝑠(𝑧 − 𝜂𝑟𝑒𝑓 (𝐱))
(

𝑥 − 𝑥𝑎𝑏𝑠
)2

if 𝑥 > 𝑥𝑎𝑏𝑠 (45)
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𝐿𝑎𝑏𝑠
d

𝐷𝜙 = −𝛾𝑎𝑏𝑠(𝑤 −𝑤𝑟𝑒𝑓 (𝐱))
(

𝑥 − 𝑥𝑎𝑏𝑠
𝐿𝑎𝑏𝑠

)2
if 𝑥 > 𝑥𝑎𝑏𝑠 (46)

where 𝑥 and 𝑧 are the coordinates of any seine3d free surface node
hose position vector is 𝐱 and whose vertical velocity is 𝑤. 𝜂𝑟𝑒𝑓 (𝐱) and
𝑟𝑒𝑓 (𝐱) stand for reference values towards which the vertical position
nd velocity of the free surface nodes are forced. In the case of a
amping region, these values are those of the static solution for the
ndisturbed free surface:

𝜂𝑟𝑒𝑓 = 0 (47)

𝑟𝑒𝑓 = 0 (48)

nd 𝑥𝑎𝑏𝑠 and 𝐿𝑎𝑏𝑠 are the starting abscissa and horizontal extent of the
amping region respectively. A quadratic progression of 𝐷𝜂 and 𝐷𝜙 on
is used, where 𝛾𝑎𝑏𝑠 is the damping strength or damping intensity.

f the same numerical value is used for 𝛾𝑎𝑏𝑠 in both damping terms,
hysical dimensions differ. Rigorously speaking, two different variables
hould be employed, namely 𝛾𝑎𝑏𝑠,𝜂 and 𝛾𝑎𝑏𝑠,𝜙, with s−1 and s−1m−1 as
espective units. To simplify the sensitivity analysis presented later, as
lready mentioned, it was quite arbitrarily decided to test the influence
f a unique numerical value attributed to both 𝛾𝑎𝑏𝑠,𝜂 and 𝛾𝑎𝑏𝑠,𝜙. For this
eason, and for the sake of brevity, the damping intensity is simply
eferred to as 𝛾𝑎𝑏𝑠, without any specification of units nor distinction
etween the associated free surface boundary equations.
𝛾𝑎𝑏𝑠 and 𝐿𝑎𝑏𝑠 are case-specific, and it is also expected that their

alues are somewhat related, as the damping intensity needed to absorb
given wave may not be independent of the distance over which

bsorption is realized. As in many wave simulation studies conducted
ith different physical assumptions and numerical solvers a length of
𝑎𝑏𝑠 = 𝜆 is often used. This choice is repeated in the current work,
earing in mind that it is mostly arbitrary. Indeed, although it seems to
e a suitable value, no sensitivity analysis related to 𝐿𝑎𝑏𝑠 and assessing
he quality of the wave damping was made due to time constraints. For
n in-depth description of the wave absorption strategy, the reader is
eferred to Grilli and Horrillo (1997).

The same cannot be said of 𝛾𝑎𝑏𝑠, whose value is modified to min-
mize wave reflection on the absorbing region. A quick and non-
xhaustive study on the influence of 𝛾𝑎𝑏𝑠 on the reflection coefficient 𝑅
ssociated with the damping region is thus realized. The method used
o compute this coefficient is that of Goda and Suzuki (1976), based on
ime-series from two wave gauges.

pplication to the wave with 𝑇 = 15 s. A 5𝜆-long seine3d domain is
sed to find a value of 𝛾𝑎𝑏𝑠 minimizing the reflection induced by the
amping layer, in the case of a wave with 𝑇 = 15 s and 𝐻 = 5.75m,
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Fig. 9. Influence of the damping intensity on the reflection coefficient measured
upstream of the damping region for waves with 𝑇 = 15 s, 𝐻 = 5.75m, and a depth
f ℎ = 27m.

nd a depth of ℎ = 27m. As already stated 𝐿𝑎𝑏𝑠 = 𝜆. Wave gauges are
espectively located at 𝑥1 = 3𝜆 and 𝑥2 = 3.25𝜆. The selected spatial
nd temporal discretization parameters are known to be suited to the
imulation of wave propagation in seine3d alone and will serve as a basis
or the coupled simulations to come. seine3d boundary elements are
iven longitudinal and vertical dimensions of 𝛥𝑥 = 𝜆∕16 and 𝛥𝑧 = ℎ∕4,
nd the time step is set to 𝛥𝑡 = 𝑇 ∕100. The CFL is therefore estimated
s:

FL =
√

𝑔ℎ 𝛥𝑡
𝛥𝑥

= 0.172 (49)

he duration of the simulation is set to 50𝑇 .
Fig. 8 shows the SF and simulated free surface position time histo-

ies in the most advantageous case with 𝛾𝑎𝑏𝑠 = 1 and 𝑅 = 1.2%. Such
reflection rate is satisfactory and even though lower values may be

ttainable, they are not sought in this work. It should be noted that the
imulation takes approximately 20𝑇 to stabilize, with the occurrence of
few overshoots. Hence making such simulations last for 50𝑇 seems a

easonable choice, allowing to use 20𝑇 or 30𝑇 for the spectral analysis
f the signals.

The reflection rate 𝑅 is also assessed for a few other values of
𝑎𝑏𝑠, as shown in Fig. 9. It can be seen that the influence of the
amping intensity on wave absorption in seine3d conforms with what
s intuitively expected, with a minimum for a given value of 𝛾𝑎𝑏𝑠. As
𝑎𝑏𝑠 increases, the damping region behaves more and more like a solid
ertical wall. Thus if 𝛾𝑎𝑏𝑠 is too high, strong wave reflection occurs,
imited to the upstream part of the damping region. Conversely, as 𝛾
15

𝑎𝑏𝑠
ecreases, the absorbing layer tends to full transparency, and the waves
an go through it without being sufficiently attenuated and reflection
hen occurs on the downstream boundary of the numerical domain.

This damping behavior still holds in the case of the other design
aves considered in this study. Indeed, the same value of 𝛾𝑎𝑏𝑠 = 1 also
ields very low reflection rates for waves with 𝑇 = 12 s and 𝑇 = 9 s.

.2.2. Velocity field in seine3d simulations
It has been established that the simulated and SF free surface

ime profiles match quite well, even with arbitrarily chosen seine3d
umerical parameters: 𝛥𝑥 = 𝜆∕16, 𝑁𝑧 = 6 and 𝛥𝑡 = 𝑇 ∕100. We now
ake sure that the velocity field obtained by seine3d comply with the

F ones built from the SF algorithm. It is of central interest, as the
oupling methodology relies on the exchange of vertical profiles of
elocity between seine3d and CS. Such a comparison is displayed in
ig. 10 at 5 time instants between 𝑡 = 49𝑇 and 𝑡 = 50𝑇 .

Overall, velocity profiles match quite well, and it is difficult to
istinguish solutions corresponding to the various combinations of
arameters tested. Small but notable discrepancies take place between
= 49.6𝑇 and 𝑡 = 49.8𝑇 for the horizontal velocity and at 𝑡 = 49𝑇 for

he vertical velocity, at the very end of the simulation time.
We might therefore conclude that the spatial and temporal dis-

retizations employed as default values in seine3d calculations, namely
𝑥 = 𝜆∕16, 𝑁𝑧 = 4 and 𝛥𝑡 = 𝑇 ∕100 (leading to a CFL of 0.172)
re adapted for further use in coupled simulations with 𝜖 = 1∕40 and
= 15 s. These spatial and temporal discretization levels thus serve as
basis to model the propagation of regular waves in coupled potential
omains, but are adapted to suit constraints inherent to the coupling
ith CS instances.

.3. Parameter choice in CS

Similarly to what has been done with simulations involving only
eine3d, a correct combination of time step and computational cell size
s sought for CS, for a wave steepness 𝜖 = 1∕40.

.3.1. Simulation setup for tests in CS
A numerical domain length of 4 wavelengths is used. One wave-

ength is dedicated to wave generation at one end of the domain,
hereas a wave-damping region of the same length occupies the other
nd. The vertical walls and the domain bottom are set to a free-slip
ondition for the velocity, consistent with the fact the wall boundary
ayers are neglected. Homogeneous Neumann conditions are imposed
n the air fraction and pressure. An Imposed Pressure Outlet boundary
ondition consisting of a Dirichlet boundary condition on pressure
longside with homogeneous Neumann conditions on the velocity com-
onents and the air fraction is set at the top of the domain. A detailed
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Fig. 10. Vertical profiles of seine3d horizontal (left) and vertical (right) velocity at the virtual abscissa of the monopile (𝑥 = 0.0m) during the 50th wave period for several values
of 𝛥𝑡 and 𝑁𝑧. 𝛥𝑥 is set to 𝜆∕16.
o

[

description of the different types of boundary conditions in CS may be
ound in the theory guide (Code Saturne development team, 2019).

To reduce the number of cells in the associated computational mesh,
he vertical dimension of the cells is not uniformly distributed. Indeed,
nd as a default choice, 𝛥𝑧 is set to 𝐻∕20 around the free surface, and
t gradually increases up to 𝐻∕4 near the floor and ceiling of the CS
omain. With the same goal in mind, a longitudinal cell aspect ratio of 4
s chosen in the vicinity of the free surface, with 𝛥𝑥 = 𝐻∕5. A first value
or the CS time step size was selected based on two previous results,
amely the fact that 𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑 = 𝑇 ∕100 was found to be a correct value
or seine3d regular wave simulations, and that time steps ratios in the
rder of 10 or 15 proved relevant in the coupled simulation of solitary
ave propagation (not shown here, see Landesman, 2022). Thus the

tep size verifies 𝛥𝑡 = 𝑇 ∕1500. The CFL value becomes:

𝐹𝐿 =
√

𝑔ℎ 𝛥𝑡
𝛥𝑥

= 0.14 (50)

Note that some of these choices are challenged in Section 5.3.4. It
was also decided to keep using conforming hexahedral meshes in
simulations involving CS only, at the cost of using rather high cell
aspect ratios. Indeed, it should be recalled that only conforming grids
are dealt with in the coupling strategy, or at least meshes with con-
forming parts in the overlapping regions associated with the coupling
instances.

Wave generation is ensured by a Dirichlet condition on velocity
and air fraction at the upstream (inlet) boundary face associated with
an additional source term in the air fraction transport equation. The
vertical position reached by the free surface at the inlet face, as well as
the vertical profiles of both velocity components 𝑢𝑥 and 𝑢𝑧, needed to
set the Dirichlet condition, are provided by a program implementing
the semi-analytical SF wave algorithm of Fenton (1999). A negative
16
homogeneous horizontal current is added to 𝑢𝑥 to ensure that Stokes
drift is canceled. To absorb waves, similar source terms affecting a
damping region located at the other end of the tank are added to the
same equations.

Here a brief overview of these source terms is given. Generalizing
Eq. (10) and (11) with modified pressure to the case where a non-zero
mass source term 𝑆 and a user-defined momentum source term 𝑆𝐮 exist,
ne gets:

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) =𝑆 (51)
𝜕𝜌𝐮
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) = − ∇𝑝 + ∇ ⋅ T

+ (𝜌 − 𝜌𝑎𝑖𝑟)𝐠 + 𝑆𝐮 (52)

Making use of the conservation equation to develop the instationary
term 𝜕𝜌𝐮

𝜕𝑡
in the momentum equation, one obtains:

𝜌 𝜕𝐮
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) − 𝐮∇ ⋅ (𝜌𝐮)

= −∇𝑝 + ∇ ⋅ T + (𝜌 − 𝜌𝑎𝑖𝑟)𝐠 + 𝑆𝐮 − 𝐮𝑆 (53)

The VOF system of equations under the incompressible flow assumption
can then be recalled:
𝜕𝜌𝐮
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) = −∇𝑝 + ∇ ⋅ T + (𝜌 − 𝜌𝑎𝑖𝑟)𝐠 (54)

∇ ⋅ 𝐮 = 0 (55)
𝜕𝛼
𝜕𝑡

+ ∇ ⋅ (𝛼𝐮) = 0 (56)

Mass conservation in the VOF model is therefore:
𝜕𝛼 + ∇ ⋅ (𝛼𝐮)

]

+
𝜌𝑤𝑎𝑡𝑒𝑟 ∇ ⋅ 𝐮 = 0 (57)
𝜕𝑡 𝜌𝑎𝑖𝑟 − 𝜌𝑤𝑎𝑡𝑒𝑟
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A forcing source term 𝑆𝛼 can be added to the air fraction transport
Eq. (56), following:

𝑆𝛼 = 𝛤 𝑓𝑟𝑐
𝛼 (𝛼𝑟𝑒𝑓 − 𝛼) (58)

with 𝛼𝑟𝑒𝑓 a reference air fraction field towards which the computed
field is forced and 𝛤 𝑓𝑟𝑐

𝛼 a forcing coefficient having the dimension s−1.
Hence, a corresponding source term 𝑆∗

𝛼 has to account for changes in
he volume conservation Eq. (55)

∗
𝛼 = −

𝜌𝑎𝑖𝑟 − 𝜌𝑤𝑎𝑡𝑒𝑟
𝜌𝑤𝑎𝑡𝑒𝑟

𝛤 𝑓𝑟𝑐
𝛼 (𝛼𝑟𝑒𝑓 − 𝛼) (59)

o that Eq. (57) still holds.
Similarly, considering a momentum source term injected in Eq. (54)

ith 𝐮𝑟𝑒𝑓 a target velocity field, it comes:

𝐮 = 𝛤 𝑓𝑟𝑐
𝐮 𝜌(𝐮𝑟𝑒𝑓 − 𝐮). (60)

hese source terms have an implicit part, involving the relevant scalar
r vector field 𝛼 or 𝐮, and an explicit one to take into account the
eference solution. It should also be noted that 𝑆𝐮 operates in both
hases.

The VOF system of equations then becomes:
𝜕𝜌𝐮
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) = − ∇𝑝 + ∇ ⋅ T

+ (𝜌 − 𝜌𝑎𝑖𝑟)𝐠 + 𝑆𝐮 − 𝐮𝑆∗
𝛼 (61)

∇ ⋅ 𝐮 =𝑆∗
𝛼 (62)

𝜕𝛼
𝜕𝑡

+ ∇ ⋅ (𝛼𝐮) =𝑆𝛼 (63)

In the wave generation region, 𝛼𝑟𝑒𝑓 is based on the free surface profile
provided by the SF wave algorithm, i.e., it is set to 0 if the vertical
coordinate of the considered computational cell’s center is lower than
the SF value, and to 1 otherwise. Accordingly, 𝐮𝑟𝑒𝑓 is built using the SF
velocity field. In the damping region, the same strategy is implemented
for 𝛼𝑟𝑒𝑓 based on the resting free surface level, while 𝐮𝑟𝑒𝑓 is simply set
to zero.

The forcing coefficients 𝛤 𝑓𝑟𝑐
𝑓 , where 𝑓 stands for 𝛼 or 𝐮, are modu-

lated by a spatially varying blending function 𝜔(𝐱).

𝛤 𝑓𝑟𝑐
𝑓 = 𝜔(𝐱) 𝛾𝑓𝑟𝑐𝑓 (64)

with 𝛾𝑓𝑟𝑐𝑓 the forcing intensity.
As described in , the selected blending function takes the value 1

at the inlet boundary and exponentially decreases down to 0 at the
end of the generation region. The opposite is true for the absorbing
layer. For wave generation, a suitable value of 𝛾𝑓𝑟𝑐 is found following
a trial-and-error approach in which the simulated free surface profiles
at the beginning of the simulation – as long as waves have not started
to interact with the downstream damping layer – are compared to their
SF counterparts. To absorb waves, the forcing intensity is selected after
a series of tests in which, as in , the smallest possible reflection rate 𝑅
is sought.

By successive improvements, a working setup was found for the
wave case investigated in this section. In the damping layer, 𝛾𝑓𝑟𝑐𝛼 is
identical to 𝛾𝑓𝑟𝑐𝐮 while 𝛾𝑓𝑟𝑐𝐮 equals zero in the generation area. Values of
𝛾𝑓𝑟𝑐𝛼 differ by nearly two orders of magnitude in both regions. Optimal
values were found to depend on the wave conditions. As we do not
make use of wave generation and absorption capabilities of CS in the
coupled simulations, a more exhaustive study of the related parameter
influence is therefore not shown here.

5.3.2. Analysis of free surface elevation signals
In general, the free surface elevation produced by CS is satisfactory.

It should also be noted that all the results displayed in this section
were obtained using a design wave with 𝑇 = 15 s and 𝐻 = 5.75m;
see also Table 1. Consider the free surface spatial profiles in the whole
17

CS domain at two different time instants (𝑡 = 5𝑇 and 50𝑇 ) in Fig. 11. p
Fig. 11. Comparison of the SF and computed free surface profiles at time instants
𝑡 = 5𝑇 and 𝑡 = 50𝑇 in a test simulation involving only CS.

𝑡 = 5𝑇 is deemed a sufficient initialization delay, after which waves
are assumed to have fully developed in the domain. One also notes
the important free surface smearing occurring in the absorbing region,
due to the forcing brought by the additional source terms. Free surface
smearing gradually extends upstream as the computation advances,
as can be noticed by comparing both colored curves. Away from the
damping zone and its close vicinity, the simulated free surface profiles
agree well with the SF one. Hence, to avoid disturbances in the free
surface profile it seems reasonable not to consider results farther than
𝑥 = 2.5𝜆.

.3.3. Assessment of wave kinematics
The free surface shape remaining satisfactory on most of the domain

hrough time, we should now assess the quality of the simulated
inematics beneath the wave, as this is necessary for the accuracy of
orce calculations in wave–structure interactions. To that end, the fields
f 𝑢𝑥 and 𝑢𝑧 in the water phase are shown at time instants 𝑡 = 5𝑇 in
ig. 12a. The corresponding SF free surface position is also pictured
s a reference, and we may once again notice that the simulated free
urface solution looks well for 𝑥 < 2.5𝜆 at least.

The velocities appear more problematic, with spurious velocity
atterns appearing close to the free surface slightly upstream of 𝑥 = 2.5𝜆
t 𝑡 = 50𝑇 . Their horizontal extent seems correlated to that of the
haotic free surface area, that expands from 3𝜆 to 4𝜆. Away from this
egion, however, the velocity components seem to agree with what is
xpected, except close to the wave generation boundary. Therefore, a
uite conservative choice is made to restrict the working length of the
S domain to the area enclosed between 𝑥 = 𝜆 and 𝑥 = 2.25𝜆, for the
hole duration of the simulation. 𝑥 = 2𝜆 is thus chosen to extract and

ompare the vertical profiles of velocity.
Fig. 13a depicts the vertical profiles of horizontal velocity at dif-

erent time instants when the theoretical wave crest passes 𝑥 = 2𝜆.
continuous worsening of the horizontal velocity profile is observed

hrough time, as the velocity is overestimated close to the free surface
nd underestimated near the bottom. A study of the phase error in
ave propagation showed errors under 2◦, and cannot explain these
iscrepancies alone.

These results are somewhat similar to those obtained by Larsen
t al. (2019) and references therein with Interfoam, considering the
ropagation of a SF wave under periodic boundary conditions. The
ncrease in time of the vertical gradient of the horizontal velocity
bserved here is similar to what these authors noticed. In Larsen et al.
2019), it is assumed that the existence of nonphysical water velocities
lose to the free surface is caused by an imbalance in the momentum
quation in nearby cells, originating from discretization errors in the
orce terms of NS equations. Due to the high-density ratio between
ater and air, any spurious transfer of momentum from the dense

hase to the light one then leads to a large overestimation of the
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Fig. 12. Velocity field in CS: (a) horizontal and vertical velocity components at 𝑡 = 5𝑇 with SF free surface profile in black; (b) normalized error on the horizontal velocity over
one wavelength, at time instants 𝑡 = 5𝑇 (top) and 𝑡 = 50𝑇 (bottom).
Fig. 13. Vertical profiles of the horizontal velocity beneath the wave crest at 𝑥 = 2𝜆: (a) instantaneous values; (b) time average of the horizontal velocity over one wave period
between 𝑡0 and 𝑡0 + 𝑇 . The mean Eulerian horizontal velocity, as computed by the SF wave algorithm, is shown for comparison.
air velocity near the free surface. Unrealistic air velocities are then
inevitably diffused back to the superficial part of the water phase, as the
VOF advection scheme cannot maintain arbitrary high shearing values
at the interface between the phases. As Interfoam is comparable to CS
in its conception, these conclusions should also apply to the current
study.

It appears that the velocity overestimation close to the free surface
not only occurs near the wave crest. It is stronger on the quarter of
the wavelength extending in front of the wave trough. Large values
of 𝜖𝑢𝑥 concentrate in a layer located just beneath the interface whose
thickness increases with time. Velocity underestimation close to the
bottom, although smaller, grows by an order of magnitude throughout
the simulation.

As a last illustration of the distortion of the vertical profiles of
horizontal velocity, the time average of 𝑢𝑥 along a vertical line located
at 𝑥 = 2𝜆 is computed. The latter extends from the bottom up to slightly
under the wave trough. This maximal ordinate is taken as 𝑧 = −𝐻∕2.
Results are displayed in Fig. 13b. The computed mean profiles indicate
that a clockwise circulation builds up in the bulk of the domain. A
18
vertical gradient of mean horizontal velocity appears and grows in time,
as opposed to what the SF theory predicts. The mean vertical velocity is
negligible as compared to the horizontal mean and is not shown here.

For possible causes, the potential influence of the damping region
on the generation of this spurious circulation should be addressed.
Although the findings of Larsen et al. (2019) with Interfoam involve a
periodic domain in which no absorbing layer is implemented, we can-
not exclude the possibility that the velocity forcing at the downstream
end of the CS domain has something to do with the worsening of the
vertical profile of 𝑢𝑥, observed at least one wavelength upstream from
the beginning of the damping region.

Hence, three possible explanations have been considered to describe
the occurrence of the overestimation of the velocity just beneath the
air/water interface: imbalance in the momentum conservation equa-
tions close to the free surface, as described by Larsen et al. (2019),
inappropriate velocity boundary condition at the top in the air phase,
and upstream influence of the damping region. It should be recalled
that this goes along with satisfactory free surface profiles in the major
part of the domain.



Ocean Engineering 308 (2024) 118209P. Landesman et al.

i
r
a
t
s
t
v
t
𝑡
i
f

3
m
i
𝑇
c
w
t
s
p

n

o
w

u
a
e
t
t
s
a
l
d
i
T
r
r
r

5

l
𝑇
p

5

t
p
m
t
1
t

w
𝛥
a
𝐴

s
p

𝑁

5.3.4. Influence of numerical parameters on the velocity
Issues concerning the agreement of the vertical profile of horizontal

velocity with the reference solution have been raised in the previous
section. A direct way of improving CS velocity results is to increase
the spatial and temporal resolution of the simulations. The wave pe-
riod and steepness and the domain setup are kept the same. Without
exhaustiveness in mind, 3 different values of the cell aspect ratio (AR)
close to the free surface at rest were tested (𝐴𝑅 ∈ {1, 2, 4}) while AR = 4
s the default value previously used. The definition given for the aspect
atio is 𝐴𝑅 = 𝛥𝑥∕𝛥𝑧. Similarly, the performances of 3 time step sizes are
ssessed, namely 𝛥𝑡 = 𝑇 ∕750, 𝑇 ∕1500, and 𝑇 ∕3000, with 𝑇 ∕1500 being
he default setting. The cell height close to the free surface has been
et to 𝛥𝑧 = 𝐻∕20, but the CS mesh is vertically stretched away from
he free surface resting position. Simulations were run with additional
alues of 𝛥𝑧 = 𝐻∕10, 𝐻∕15, and 𝐻∕50. To save computational time,
he results, shown in Fig. 14, are compared with the reference at time
= 5𝑇 . As the velocity overestimation was already observed at this time
nstant in previous simulations, it was deemed suitable and it allowed
or quick computations.

The analysis of simulation outcomes is quite straightforward: of the
parameters of interest, the only one for which noticeable improve-
ents are achieved as compared to the results with the default value

s the time-step size. Increasing the time resolution from 𝑇 ∕1500 to
∕3000 leads to a decrease in the overprediction of horizontal velocity
lose to the free surface. Conversely, the vertical profiles of 𝑢𝑥 worsen
hen a value of 𝛥𝑡 = 𝑇 ∕750 is used. At the same time, the influence of

he cell AR, at least in the range considered here, is negligible. Small
purious variations close to the free surface are observed in the velocity
rofiles obtained using cells with a height lower than 𝐻∕20. Increasing

the vertical resolution in the free surface region up to 𝛥𝑧 = 𝐻∕50 did
ot improve the results.

As a result, 𝐴𝑅 = 4, 𝛥𝑡 = 𝑇 ∕3000 and 𝛥𝑧 = 𝐻∕20 thus form a set
f basis parameters that are used in CS in coupled simulations with a
ave steepness of 1∕40. This yields a CFL of 0.07, as defined in Eq. (49).

To get a last insight on the quality of the wave kinematics computed
sing only CS, the vertical profiles of velocity over a whole wave period
re shown in Fig. 15 at 5 stages of the simulation. Vertical profiles of 𝑢𝑥
xhibit behaviors coherent with what has been previously observed for
he horizontal velocity under the crest. Not long after the beginning of
he simulation, between 𝑡 = 4𝑇 and 𝑡 = 5𝑇 , 𝑢𝑥 remains close to the SF
olution for the first half of the wave period. During the other half, an
lmost constant offset affects the horizontal velocity, which disappears
ater in the simulation. 𝑢𝑥 overestimations increase in time, mostly
uring the first half of the simulation, up to 𝑡 = 50𝑇 . In general, it
s hard to distinguish between curves with 𝑡0 = 49𝑇 and later 𝑡0 = 99𝑇 .
his indicates that the gap between the computed velocity and the
eference does not continuously and monotonically drift with time, but
ather seems to reach a steady value. Noticeably, agreement with the
eference profile is better beneath the crest than the trough of the wave.

.4. Coupled simulations in 2D

Now that suitable numerical settings have been established to simu-
ate the generation, propagation, and absorption of regular waves with
= 15 s and 𝜖 = 1∕40 in both models separately, we return to the setup

resented in Fig. 7 and run coupled simulations.

.4.1. Coupling parameters
As already mentioned, specific numerical strategies and discretiza-

ion levels used in seine3d and CS instances, which have been set in
revious computations involving only one model, are left unchanged as
uch as possible. For this 2DV wave case, the only coupling parameter

hat is yet to be set is the length of the two overlapping regions seine3d
/CS and CS/seine3d 2. The time step ratio 𝑁𝛥𝑡 is fully constrained by
he choices made in model instances seine3d 1 and CS. Besides, the time
19
Fig. 14. Comparison of SF and computed vertical profiles of the horizontal velocity
at 𝑡 = 5𝑇 . Simulations using only CS with the same setup as before. (a) simulation

ith varying cell aspect ratio (AR), other parameters are set to 𝛥𝑧 = 𝐻∕20 and
𝑡 = 𝑇 ∕1500. (b) simulation with varying time-step, other parameters are set to 𝐴𝑅 = 1
nd 𝛥𝑧 = 𝐻∕20. (c) simulation with varying cell height, other parameters are set to
𝑅 = 1, 𝛥𝑡 = 𝑇 ∕1500.

tep size employed in seine3d 1 is enforced in seine3d 2. Thus, from the
revious section,

𝛥𝑡 =
𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑
𝛥𝑡cs

= 30 (65)

as 𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑 was set to 𝑇 ∕100 and 𝛥𝑡cs = 𝑇 ∕3000.
𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is the same in both overlapping regions, and it is chosen

arbitrarily. This takes into account the fact that at least 4 seine3d bound-
ary elements in the length of the overlapping regions seem necessary, as
turned out from previous solitary wave propagation simulations (Lan-
desman, 2022). As 𝛥𝑥𝑠𝑒𝑖𝑛𝑒3𝑑 was set to 𝜆∕16 beforehand, 𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is thus
set to 𝜆∕4.

Based on preliminary estimations and general guidelines concerning
both models’ behavior, 19 and 15 CPU cores are attributed to seine3d
1 and seine3d 2 respectively, while CS uses 2 cores. This way the
computation requests one 36-cores node from the computing cluster.
Such breakdown of computing power is somewhat not intuitive, as
seine3d is supposed to be less computationally expensive than CS, but
here requires more cores per wavelength. As its name suggests though,
seine3d is a 3D code and 4 boundary elements fit the potential domain’s
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Fig. 15. Vertical profiles of horizontal (left) and vertical (right) velocity at 𝑥 = 2𝜆 during one wave period just before 𝑡 = 5𝑇 , 𝑡 = 50𝑇 and 𝑡 = 100𝑇 . Simulation using CS only.
Fig. 16. Instantaneous free surface profiles from coupled model instances at 𝑡 = 50𝑇 .
Circles mark the position of seine3d free surface nodes.

width. On the opposite, there is only one cell in the width of CS
domain. Therefore computational efficiency is of no interest here, but
is addressed while discussing 3D simulations below. We might however
indicate that it takes about 10 h to reach a physical time equivalent to
50𝑇 .

5.4.2. Simulation results
Fig. 16 shows the global free surface profile after 50 wave periods.

The agreement with the SF reference solution is satisfactory. In particu-
lar, free surface matching is ensured in the two overlapping regions. It
is interesting to note that, at this time instant at least, the wave height
is slightly lower in CS than in the neighboring potential domains. A
close study of the profiles indicates that almost no wave reflection is
experienced from the presence of overlapping regions.
20
To further assess the relevance of the coupling methodology applied
to regular wave simulations, the velocity fields are compared around
𝑡 = 50𝑇 in both overlapping regions in Fig. 17. A good overall
agreement is seen. Discrepancies are observed close to the free surface,
the largest ones on the upstream boundary of the seine3d 2 domain.
They should be linked to edge/corner singularities in seine3d. Other dis-
crepancies seem to originate from the viscous domain, as CS velocities
quite systematically slightly exceed the seine3d velocity close to the free
surface.

As a final comparison of the kinematics, the vertical profiles of
velocity extracted from the central CS domain are juxtaposed to the
ones predicted by the SF solution (Fig. 18). To allow enough time for
the waves to build, the wave period considered is the 20th. The results
resemble those depicted in Fig. 15, thus they are not further described.
The coupling procedure clearly reproduces the behaviors experienced
in each model alone.

5.4.3. Coupled model limitations for wave steepness
To consider a more nonlinear case, regular waves with a steepness

of 1∕22 are simulated, again with the domain shown in Fig. 7. Such
value of 𝜖 corresponds to the highest non-linear wave considered in
the study of Dadmarzi et al. (2019) for which results of force on the
monopile are reported. To reach it, a target wave height of 𝐻 = 10.5m
is associated with a wavelength of 𝜆 = 231.7m using the SF algorithm
of Dean (1965) implemented in seine3d.

Normalized spatial and temporal resolution levels used in the case
of the mildly nonlinear wave with 𝜖 = 1∕40 are retained in the first
attempt. In seine3d instances, the boundary element dimensions at rest
are 𝛥𝑥𝑠𝑒𝑖𝑛𝑒3𝑑 = 𝜆∕16 and 𝛥𝑧𝑠𝑒𝑖𝑛𝑒3𝑑 = ℎ∕4, with 𝛥𝑦𝑠𝑒𝑖𝑛𝑒3𝑑 = 𝛥𝑥𝑠𝑒𝑖𝑛𝑒3𝑑 . The
CS mesh is built with the same rules in mind as before, namely 𝛥𝑧cs =
𝐻∕20 close to the free surface, progressively stretched to 𝐻∕4 near the
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Fig. 17. CS and seine3d velocity fields in 𝛺𝑜𝑣𝑒𝑟𝑙𝑎𝑝 and for each coupling during the 50th simulated wave period. Velocity is extracted at the location of seine3d boundary nodes.
floor and ceiling. 𝛥𝑥cs = 𝐻∕5: this corresponds to a longitudinal aspect
ratio of 4 near the interface. The time step sizes are set to 𝑇 ∕30 and
𝑇 ∕1500 for seine3d and CS respectively, yielding a time step ratio of
15. The theoretical CFL in potential domains can be established as:

𝐶𝐹𝐿𝑠𝑒𝑖𝑛𝑒3𝑑 =
√

𝑔ℎ
𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑
𝛥𝑥𝑠𝑒𝑖𝑛𝑒3𝑑

= 0.169 (66)

n CS, it is approximated as:

𝐹𝐿cs =
√

𝑔ℎ
𝛥𝑡cs
𝛥𝑥cs

= 0.562. (67)

herefore, the time-step ratio is 𝑁𝛥𝑡 = 50. With this, the simulation
an well, with slightly higher errors in the results as compared to the
heory.

Note that a preliminary test with a smaller time-step for seine3d
ecame unstable after 20𝑇 . However, it was reported in a recent work
21
involving seine3d in its current state (Harris et al., 2022), using the same
boundary surface description method and time-stepping procedure, that
generation and propagation of SF waves were ensured in seine3d up to
a steepness of 𝜖 = 0.092. As it is equivalent to more than twice the wave
steepness used here, it implies that the case of 𝜖 = 1∕22 should not raise
issues in seine3d, but may be an issue with the coupling for steep waves.

6. Diffraction by a vertical cylinder

6.1. Numerical setup

In this section, 3D coupled simulations of nonlinear regular waves
interacting with a surface-piercing vertical cylinder representing a large
offshore wind turbine foundation are presented, matching the WAS-XL

measurement campaign (Dadmarzi et al., 2019). The mesh is essentially
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Fig. 18. Vertical profiles of CS horizontal (left) and vertical (right) velocity in a coupled simulation, compared to the reference SF solution, just before 𝑡 = 20𝑇 , 𝑡 = 50𝑇 and
𝑡 = 100𝑇 .
Fig. 19. Computational domains for the 3D case with 𝑇 = 15 s and 𝜖 = 1∕40: (a) close-up view of the CS mesh in the vicinity of the monopile; (b) view of the coupled computational
domains.
identical to the 2DV domain, extruded horizontally (in the 𝑦 direction),
except for the structure. The intrinsic symmetry of the problem is taken
into account to halve the numerical domain size. A free-slip (symmetry)
boundary condition is enforced on the cylinder surface, as well as on all
vertical walls and bottom, where the velocity vector satisfies 𝜕𝐮∕𝜕𝑛 = 0.

In the experimental study of Dadmarzi et al. (2019), two water
depths are considered in the basin, namely 27m and 33m at prototype
scale, in which two monopile models are placed whose respective
22
diameters are 9m and 11m. Here, only the case with 27m depth and
𝐷 = 9m diameter is considered. Similar to the above, the wave
steepness is defined as the first-order wave height divided by the
wavelength. Four different wave conditions are reproduced from the
WAS-XL campaign, with two values of the wave steepness 𝐻∕𝜆: 1∕40
and 1∕22. For the lower wave steepness, the wave conditions are
summarized in Table 1. Three wave periods are considered with ℎ =
27m and 𝐷 = 9m: 9 s, 12 s, and 15 s, the latter corresponding to the
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Fig. 20. Comparison of SF and computed free surface signals at the wave gauge closest to the monopile for 𝑇 = 9 s and 𝜖 = 1∕40.
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ase extensively studied in 2D in Section 5. For the more exploratory
ase of 1∕22 steepness, only a period of 15 s is investigated, associated
ith a wave height of 𝐻 = 10.5m.

The time discretization as well as the vertical and longitudinal
patial resolutions, normalized using the wave characteristics, are kept
he same in code instances seine3d 1 and seine3d 2, as well as all other
arameters and options, such as solver or time-stepping scheme choices
similar to the earlier Fig. 7). Similarly, most CS numerical parameters
re left unchanged and follow the relations established in Section 5.
computational mesh with a body-fitted description of the monopile

urface is built (Fig. 19). Most meshing specifications elaborated in 2DV
ases are met, i.e., 𝛥𝑥cs and 𝛥𝑦cs equal 𝐻∕5 in most of the domain,

away from the close vicinity of the monopile. 𝛥𝑧cs = 𝐻∕20 is verified
in a layer comprised between 𝑧 = −𝐻∕2 and 𝑧 = 𝐻 . The length
of the overlapping regions between CS and seine3d domains equals
𝜆∕4, as established in 2DV studies. To match the characteristics of the
experimental wave basin, the width of the domain is set to 62.5m.
𝛥𝑥𝑠𝑒𝑖𝑛𝑒3𝑑 is kept equal to 𝜆∕16, while 𝛥𝑦𝑠𝑒𝑖𝑛𝑒3𝑑 is given the value of
𝑥𝑠𝑒𝑖𝑛𝑒3𝑑 in both seine3d instances. A target value of 𝛥𝑧𝑠𝑒𝑖𝑛𝑒3𝑑 = ℎ∕4

where the free surface is at rest is retained.

Coupled setup. For the 1/40 steepness, following the conclusions of the
sensitivity analysis conducted in Section 5.3.4, 𝛥𝑡cs is set to 𝑇 ∕3000,
thus setting the value of the time step ratio to 𝑁𝛥𝑡 = 30. In accordance
with the 2DV coupled wave simulations, 𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑 = 𝑇 ∕100.

As mentioned, for the coupled setups, slightly different domains
ere used for each case, to scale with the wavelength. For 𝑇 = 9 s,

he mesh in the domain seine3d 1 had 3219 nodes, while the one in
he domain seine3d 2 had 1929 nodes, and the CS computational mesh
omprised 2 400 293 cells. For 𝑇 = 12 s, seine3d 1 mesh had 1701 nodes,
hile seine3d 2 mesh had 1533 nodes, and the CS mesh comprised
144 443 cells. For 𝑇 = 15 s, seine3d 1 mesh had 1181 nodes, while

eine3d 2 mesh had 1401 nodes, and the CS mesh comprised 652 859
ells.

For the 1/22 steepness, 𝛥𝑡𝑠𝑒𝑖𝑛𝑒3𝑑 is set to 𝑇 ∕30 and 𝛥𝑡cs takes the
alue 𝑇 ∕1500, yielding 𝑁𝛥𝑡 = 50. The rules governing the geometry
f the different 3D subdomains are kept the same, and the wave-
amping parameters are left untouched. As CS mesh cell dimensions
re based on fixed fractions of 𝐻 , the body-fitted mesh used in the
urrent case is the smallest built for a 3D coupled simulation, with
21 783 elements. Hence, a single 36-core computing node is required
o run the simulation, as 4 CPU cores are attributed to CS, while seine3d
and seine3d 2 are given 15 and 17 respectively. 100 wave periods are

imulated in little more than one day with this setup.

S -only setup. A CS-only computation is set up with the same numer-
cal parameters as used in the CS instance for the coupled simulation
23
ith 𝑇 = 9 s. A mesh describing the whole domain is built with
9 181 137 cells. Its part encompassing the monopile is the same as
n the associated coupled simulation. Wave generation and absorption
re realized with damping regions involving source terms added to
he air fraction and momentum conservation equations, as described
n Section 5.3. Each region is one wavelength long, thus the CS-only
umerical domain is one wavelength longer than the global hybrid one,
s wave generation is limited to the upstream boundary only in the
omain seine3d 1, in the hybrid case. The damping intensity, whose
ptimal value is not independent of the wave conditions, is selected in
oth regions after a brief sensitivity analysis conducted on 2DV wave
imulations.

.2. Free surface elevation

The free surface time signals at the reference wave gauge are shown
n Fig. 20. A duration of around 20𝑇 is needed from the initial stage
f the computation to reach a stabilized wave regime. Free surface
vershoots may be due to spurious wave reflection taking place in the
amping region, implemented at the downstream end of the domain
eine3d 2.

Close-up views of the free surface shape are displayed in Fig. 21, at
time instants after a wave crest has passed the monopile. A notable

pstream propagating wave can be seen, as well as strong wave run-
ps on the cylinder walls. Results conform rather well, qualitatively
peaking, with the free surface snapshots describing the interaction
f highly nonlinear non-breaking unidirectional waves with a bottom-
ounted circular cylinder reported by Paulsen (2013), Paulsen et al.

2014).

.3. Spectral analysis of horizontal force

The time history of the normalized horizontal force is partly shown
n Fig. 22 after 40 wave periods. Even with a moderate wave steepness
f 1∕40, nonlinearities are noticeable. The agreement of coupled sim-
lations with experimental results is assessed through the comparison
f the frequency contents of the time signals recorded for the depth-
ntegrated inline force on the cylinder. In Dadmarzi et al. (2019), the
mplitudes of the first three harmonics of the normalized horizontal
oad on the monopile are provided for wave periods in the time range
6 s, 16.5 s], where harmonic amplitudes are extracted with a narrow-
anded filter based on the Fast Fourier Transform (FFT). In the current
tudy, a short-time Discrete Fourier Transform (DFT) is applied to the
ave elevation and inline force time signals, with a one-wave period

liding window.
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Fig. 21. Snapshots of the free surface in the CS domain near the monopile, as a wave crest passes, with 𝑇 = 15 s and 𝜖 = 1∕22. Incident waves come from the left.
The amplitude of the 𝑖th harmonic of the depth-integrated inline
force is normalized as follows:

𝐹 (𝑖𝜔)
𝑥 =

𝐹 (𝑖𝜔),dim
𝑥

𝜌𝑔𝑎2𝐴1
(68)

where 𝐹 (𝑖𝜔),dim
𝑥 is the horizontal force of the 𝑖th harmonic of the wave

frequency 𝜔 = 2𝜋
𝑇 , 𝑎 the monopile radius, and 𝐴1 the amplitude of

the first harmonic of the free surface elevation, recorded next to the
monopile. From here on, 𝜌 designates 𝜌𝑤𝑎𝑡𝑒𝑟 for brevity in experimental
comparisons.

Table 2 presents a summary of the time-averaged results. The
agreement between experimental and simulated first-order results is
satisfactory. Discrepancies are larger for second and third orders, but
the absolute normalized amplitudes of 𝐹 are 1 to 2 orders of magnitude
24

𝑥

lower. Hence, the implemented coupling procedure allows for simulat-
ing wave diffraction by a vertical cylinder for a moderate wave steep-
ness, for various values of relative water depth and relative monopile
radius.

6.4. Computational time

To conclude on the relevance of the BEM-VOF coupling procedure,
is it necessary to have at least one comparison point available with
a CS-only simulation. CS-only and coupled simulation reach similar
accuracy levels, in terms of free surface elevation and inline force on
the cylinder. Comparing their respective computational costs is thus
relevant.

Consider the 𝑇 = 9 s case with a coupled simulation. The com-
putation runs for 3 days on four 36-cores nodes of the computing
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Fig. 22. Normalized horizontal force time signal between 𝑡 = 40𝑇 and 𝑡 = 45𝑇 for
𝑇 = 15 s and 𝜖 = 1∕40.

Table 2
Normalized amplitude of the first three harmonics of the depth-integrated inline force
on the cylinder in comparison to experimental results.
𝜖 𝑇 𝐹 (𝜔)

𝑥 ∕(𝜌𝑔𝑎2𝐴1) 𝐹 (2𝜔)
𝑥 ∕(𝜌𝑔𝑎2𝐴1) 𝐹 (3𝜔)

𝑥 ∕(𝜌𝑔𝑎2𝐴1)

1/40 9 s Experiment 5.75 0.32 0.056
CS-only 5.55 0.29 0.034
Coupled 5.84 0.27 0.030

1/40 12 s Experiment 4.78 0.72 0.014
Coupled 4.83 0.74 0.078

1/40 15 s Experiment 4.21 1.29 0.19
Coupled 4.22 1.36 0.22

1/22 15 s Experiment 4.21 1.89 0.40
Coupled 4.57 2.00 0.32

cluster, with 80 processors being attributed to the CS instance, while
35 are reserved for seine3d 1 and seine3d 2. Again, the distribution of
computational resources to the different code instances was not studied,
and it is very likely not optimal (see e.g., Harris et al., 2022 for a
study of the computational time of seine3d). 338.22 s were computed,
corresponding to 37.58𝑇 . With this setup, simulating one wave period
takes 1.75 h. The ratio of computational time to simulated time is
therefore:

𝑁𝑐𝑝𝑙. =
1.75 × 36 × 4

9
= 28.0 ch.s−1

significant variation in computational efficiency was seen between
he different cases; for the 15 s period coupled run, the ratio of compu-
ational to simulated time was 4.4 ch.s−1, for example.

Alternatively, a CS-only simulation with 𝑇 = 9 s and 𝜖 = 1∕40 was
un on 27 nodes of 36-cores each of the computing cluster for a 3-days-
ong computation. 79.3𝑇 are simulated. Simulating one wave period
ook 0.76 h. The computational time to simulated time ratio is:

cs =
0.76 × 36 × 27

9
= 82.1 ch.s−1

cs is thus 2.93 higher than the previously computed 𝑁𝑐𝑝𝑙. for the total
ybrid model. Given that 80 processors are being used for CS, this is
reduction by a factor of 3.96 for just the CS part, the rest of the

PU time taken up by the seine3d instances and the overhead of the
oupling code. This result may be seen as conservative, as we also have
pecified that computational resource allocation is perfectible in the
ase of coupled simulations. It is also close to the gain obtained using
he SWENSE method for a similar problem reported by Li et al. (2021).
otably, no study of the influence of the size of the CS numerical
omain has been conducted: it might be even smaller, but the same
ight be said of 𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝.

There should be room for improvement, and the computational
peed of hybrid computations may well be increased. A detailed scal-
bility analysis of 3D coupled large simulations was nevertheless con-
idered out of the scope of the current work. Nevertheless, it appears
25

hat 3D simulations of nonlinear wave diffraction by a vertical cylinder
are feasible with the coupling strategy, at a lower computational cost
than CFD alone. The limits experienced in 2DV about the accuracy of
free surface elevation and velocities explain most of the shortcomings
reported in 3D. Therefore emphasis should be put on 2DV highly
nonlinear simulations, in the hope that improvements can later be
applied to 3D computations.

7. Discussion

The developed coupling strategy has proven to be quite straightfor-
wardly applicable to engineering problems. Reasonable computational
costs are achieved even for large computational meshes, made possible
by the parallel nature of the hybrid solver. As an example, a 3D wave–
structure simulation with 𝑇 = 15 s, 𝜖 = 1∕40, where the CS mesh
has approximately 650 000 elements while seine3d instances meshes
respectively have 1181 and 1401 nodes requires 1.22 h to simulate one
wave period on 2 computing nodes featuring 27 CPUs. These costs
appear to amount to only a fraction – one third, in the only 3D case
investigated – of that of CS-only similar computations. Thus, this work
could enable a more frequent use of CFD tools in the engineering
practice. However, additional efforts are needed to gain more insight
into the behavior and capabilities of the coupling methodology in its
current state. Developments could also be expected to further improve
efficiency and expand the range of handled problems. Note that mem-
ory requirements are not reported here, but are generally small, a
few GB at most, as the problem is primarily limited by CPU time for
problems of the scale shown here.

Additional studies related to the use of seine3d in its current state,
with this hybrid strategy, are needed. The instabilities reported in the
coupled seine3d instances should be further investigated to understand
their origin and to possibly avoid them. Deeper convergence studies
could be conducted for coupled simulations, to further validate the
method and allow for a finer selection of numerical parameters, as well
as more accurate results, for example in terms of higher-order wave
forces. In particular, the respective impacts of the time-step ratio and
the overlapping length should be better documented. This is no doubt
problem dependent, as CFL numbers in NS solvers varies widely de-
pending on the physics. For wave modeling itself, a mesh and time step
similar to that of a potential flow model is possible (Ma et al., 2012),
whereas for breaking wave impacts on a cylinder a very small time
step is required (Li and Fuhrman, 2022). The influence of variations in
the characteristics of incident waves, especially their length and period,
over the coupled simulations and the choice of the above-mentioned
parameters of the coupling, should be studied. Investigations into the
distribution of CPU cores over the different coupled code instances and
a scalability analysis would be valuable improvements made to the
hybrid computations.

In this work, a slip condition is imposed on the surface of the
monopile in CS, as well as on all the vertical walls. Even though the
agreement with experimental results appears to be good, a possible step
forward would be to include the effects of turbulent boundary layers in
the simulations. As several turbulence models are already available in
CS, this would only require working on specific boundary conditions
for turbulent quantities at the coupled boundaries of CS instances. This
way, the local shear forces applied on partially submerged structures
would be accounted for and an increased accuracy could be reached.
Increasing the order of the interpolation schemes used in CS to extract
the values of the fluid velocity and the free surface elevation needed by
a coupled seine3d instance is yet another source of improvement. This
requires conveniently accessing air fraction and velocity gradient fields
in CS’s user routines.

Another area of improvement is the generalization of the coupling
strategy to unstructured CS meshes. Currently, it is only possible to
use meshes in which overlapping regions are described with Cartesian
grids. This would require the implementation of a new method for

computing free surface positions in CS as well. This would allow for
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easier simulation of wave forces on structures of complex shapes, with
body-fitted meshes.

It is also possible to replace CS by the two-phase code neptune_cfd,
which tracks both the air and water velocity in a given cell (as opposed
to the single velocity field here), developed by EDF R&D (2022), that
shares most of its components with CS. It has been recently successfully
applied to solve regular wave diffraction problems investigated in the
WAS-XL experimental campaign in engineering studies, similarly to
what was done with the coupled solver above. It features a porous
media approach that allows for a straightforward description of any
structure placed in waves, without the need for a complex meshing
stage (note that this feature is also planned for a future release of CS).

For the moment, some improvements added recently to seine3d have
not been tested here in the coupled seine3d instances. One of these is the
use of the Fast Multipole Method that allows for an accelerated solution
procedure (Harris et al., 2022). In addition, it might be interesting to
evaluate the sensitivity of the coupling procedure to changes made to
the time-stepping scheme selected in seine3d, as different schemes are
already implemented.

As discussed above for the viscous CFD code, alternative potential
flow solvers could also be considered using the same coupling strat-
egy developed here. This would allow exploring options to overcome
stability issues encountered in several cases here with seine3d, and/or
possibly reducing the total computational cost of the coupled simula-
tions. In this direction, the recently developed FNPF solvers based on
the HPC technique (Robaux and Benoit, 2021) or on a spectral approach
in the vertical (Zhang and Benoit, 2021) could be considered, among
other options.

8. Conclusions

The definition, implementation, verification and validation through
comparisons to analytical solutions and experimental results of a two-
way coupling strategy involving a fully nonlinear potential BEM model
and a viscous VOF model have been described. This coupling method-
ology relies on the mutual exchange of fluid velocities between both
codes, at the boundaries located at both ends of an overlapping region.
It allows the simulation of 3D wave–structure interactions on large
spatial and temporal scales, making the most of each code’s intrinsic
performances and ranges of application. Savings in the computational
cost of the simulations were obtained, by a factor of about 3 with
reference to a VOF-only simulation on a domain of the same dimen-
sions. If we further consider only the reduction of CPU time from the
coupling, CS time was reduced by a factor of about 4, giving a sense
of the performance advantage possible through an optimized potential
model. Multiple couplings may be set through the pairing of different
instances of seine3d and CS, dividing the global domain of interest
into several overlapping subdomains. The designed hybrid procedure
is intended to introduce the lowest possible number of additional
simulation parameters. After choices have been made in each code
about the temporal and spatial discretization levels, as well as about the
physical assumptions and the solution procedure, theoretically only the
length(s) of the overlapping region(s) needs to be set. Stability issues of
the hybrid computations with certain values of the CFL number in the
models were experienced, indicating that the respective temporal and
spatial resolutions affect the applicability of the coupling strategy. The
possibility to run massively parallel computations, available in seine3d
and CS, has also been retained.

In the presented 2DV coupled simulations featuring nonlinear reg-
ular waves over constant water depth, the wave conditions for a
reference experimental campaign focusing on wave interactions with
a vertical bottom-mounted circular cylinder are reproduced. In partic-
ular, a given wave condition is simulated using each code alone at
first, then with the hybrid algorithm to assess the wave generation
and absorption techniques in seine3d and CS. The results are compared
with semi-analytical SF wave solutions used for wave generation, in
26
terms of the wave elevation time history, as well as the velocity field
underneath the waves. When looking at the vertical structure of the
fluid velocity, significant differences with the expected SF profiles were
observed, increasing with time, calling for a brief sensitivity analysis of
various parameters, aimed at reducing the error levels. Finally, coupled
simulations are run for two values of the wave steepness, namely 𝜖 =
𝐻∕𝜆 = 1∕40 = 2.5% and 𝜖 = 1∕22 ≈ 4.5%. It is believed that the
rules used to set spatial and temporal discretization levels as well as
various other numerical parameters in 2DV still hold for more complex
3D cases.

Finally, the hybrid 3D simulations are validated through comparison
with experiments (WAS-XL campaign, Dadmarzi et al., 2019) about
regular wave diffraction by a vertical cylinder. Three wave conditions
with a moderate wave steepness of 𝜖 = 1∕40 are tested, while the
monopile radius and the water depth are kept constant. A satisfactory
agreement between simulated and experimental results is found in
terms of the wave elevation close to the vertical cylinder and the depth-
integrated inline force on the cylinder. Computed higher-order force
components match the experimental ones reasonably well up to third-
order. For one wave condition, a CS-only simulation is realized that
reaches accuracy levels similar to those of its hybrid counterpart, but
at a greater computational cost. A case with 𝜖 = 1∕22 shows that
coupled simulations of steep regular waves are feasible within the
coupled framework, with, however, higher error levels with respect to
experimental measurements.

In future work, the simulation of irregular and/or multidirectional
waves, possibly traveling over variable bathymetry could be conducted
following the coupling strategy. Phase-focused wave impacts with pos-
sible wave breaking could also be investigated, similar to the one-way
coupling used in Batlle Martin et al. (2023). Making the most of the
versatile nature of the hybrid solver, one might also use more complex
overlapping regions geometry. Indeed, coupling regions having the
form of rectangular or circular rings could quite easily be defined,
enabling 3D simulations of waves interacting with multiple structures.
Last but not least, the potential-CFD coupling procedure could be used
alongside with a fluid/structure coupling approach, so that interactions
of waves with moving structures could be handled. This is of particular
interest for the study of floating offshore wind turbines, which is a
promising solution for harvesting wind energy in greater water depths.
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