
HAL Id: hal-04586148
https://edf.hal.science/hal-04586148

Submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical distributions of free surface elevation and
wave height for out-of-equilibrium sea-states provoked

by strong depth variations
Jie Zhang, Yuxiang Ma, Michel Benoit

To cite this version:
Jie Zhang, Yuxiang Ma, Michel Benoit. Statistical distributions of free surface elevation and wave
height for out-of-equilibrium sea-states provoked by strong depth variations. Ocean Engineering, 2024,
293, pp.116645. �10.1016/j.oceaneng.2023.116645�. �hal-04586148�

https://edf.hal.science/hal-04586148
https://hal.archives-ouvertes.fr


Statistical distributions of free surface elevation and wave height for
out-of-equilibrium sea-states provoked by strong depth variations
Jie Zhanga, Yuxiang Maa,∗ and Michel Benoitb,c

aState Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, PR China
bEDF R&D, Laboratoire National d’Hydraulique et Environnement (LNHE), Chatou 78400, France
cLHSV, Ecole des Ponts, EDF R&D, Chatou 78400, France

A R T I C L E I N F O
Keywords:
Coastal extreme waves
Wave-bottom interaction
Out-of-equilibrium dynamics
Statistical analysis
Wave statistical distributions

A B S T R A C T
In the recent work of Zhang et al. [Coastal Eng. 174, 104099 (2022)], it is shown that, as unidirectional
irregular waves propagate over an uneven bottom with a rapid reduction of water depth, the sea-
state becomes out-of-equilibrium and non-equilibrium dynamics (NED) manifests. As the sea-state
gradually adapts to the new (reduced) water depth, the NED results in significant modulation of wave
spectrum over a relatively long distance. The present work further analyzes the numerical results of
Zhang et al. (2022) and investigates the NED effects on wave statistics in both near-field and far-field
regions after the water depth transition, including the probability distributions of free surface elevation
and wave height, the statistical moments and maximum wave statistics. The primary contribution of
the present work is to assess the applicability and limitations of several popular statistical distribution
models that are either frequently studied in the scientific literature or used in engineering practices.
Furthermore, a new distribution of the free surface elevation in a lognormal shape is proposed. It
predicts the non-equilibrium free surface statistics with satisfactory performance and characterizes
well the relationship between skewness and kurtosis. This work also shows that the statistics in the
far-field region are significantly influenced by the near-field wave-wave interaction, and beyond the
capability of all statistical models considered here. Despite this complexity, the sea-state in the far-
field region exhibits lower freak wave probability than a Gaussian sea-state. Implications of these
findings for engineering practices are discussed.
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1. Introduction
Wave statistics represents a key input for the design of

maritime structures (see e.g. Chakrabarti, 2005; Goda, 2010).
Typically, a design sea-state that corresponds to a 50∼100
years return period is obtained with extreme value analysis
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of the long-term sea-state data from either in-situ measure-
ments or hindcast simulations. In a prescribed design sea-
state, the maximum wave load, run-up, and overtopping on
fixed structures are determined based on the tail parts of the
short-term statistical distributions. The design wave is ob-
tained from the wave height (or crest height) statistical dis-
tribution with a prescribed occurrence probability. From the
engineering perspective, improving the accuracy and reduc-
ing the uncertainty in the tail part of the statistical distribu-
tions is of great interest, as this tail part determines the ex-
treme wave occurrence probability and plays a vital role in
the balance between safety and economy in the structure de-
sign. However, from a theoretical point of view, modelling
the tail of the distribution remains a challenging task, as it
is sensitive to various factors like wave nonlinearity, water
depth, wave breaking intensity, etc.

In recent decades, freak (or rogue) waves, defined as waves
with crest-to-trough heights higher than twice the significant
wave height, are recognized as hazardous events that occur
all over the world with a startling frequency (see e.g. Godoi
et al., 2017; O’Brien et al., 2017; Didenkulova and Peli-
novsky, 2020; Ma et al., 2022; Didenkulova et al., 2023).
They appear as abnormally heavy tails in probability dis-
tributions, with occurrence probability considerably higher
than the prediction of a linear model (Longuet-Higgins, 1952;
Dysthe et al., 2008). Characterizing freak wave statistics in
coastal areas is of great importance since human activity is
more involved and still rapidly growing in these areas. How-
ever, the wave evolution in coastal areas is complicated due
to the complexity of the surrounding conditions. Although
many hypotheses have been put forward to explain the for-
mation of freak waves (see e.g. Kharif et al., 2009; Onorato
et al., 2013; Dematteis et al., 2019) from either a linear or a
nonlinear perspective, yet no consensus is achieved so far on
the dominant mechanism of freak waves in the real sea. The
modulation (or Benjamin-Feir) instability (MI) is probably
the most well-known nonlinear mechanism for freak waves
(Benjamin and Feir, 1967; Janssen, 2003). However, it as-
sumes deep-water narrow-banded waves. The role played by
MI in the formation of freak waves in real sea is still under
debate (e.g. Chabchoub, 2016; Fedele et al., 2016), with the
main argument being that MI is ineffective in coastal areas
with sufficiently shallow water depth.

One decade ago, it was shown that the non-equilibrium
dynamics (NED) induced by rapid depth variations could
enhance the occurrence probability of coastal freak waves
(Trulsen et al., 2012; Zeng and Trulsen, 2012; Viotti and
Dias, 2014). Since then, the NED, as a new perspective of
nonlinear focusing, has attracted considerable attention. It
renders some generality in explaining freak waves since the
NED could be provoked not only by rapid depth change but
also by changes of other environmental conditions (Trulsen,
2018). For example, an evident non-equilibrium phenomenon
could be observed for the sea-states that encounter a signif-
icant change of ambient flow velocity (Zhang et al., 2023)
or wind speed (Annenkov and Shrira, 2015). As the en-
vironmental condition changes rapidly, the sea-state could

be forced to leave the equilibrium it had before and gradu-
ally adapt to a modified equilibrium state associated with the
new conditions. During the equilibration process of an out-
of-equilibrium sea-state, waves are characterized by evident
non-Gaussian features.

Many works have been devoted to the investigation of
NED induced by depth change (see recent updates in Zhang
et al., 2019; Bolles et al., 2019; Kashima and Mori, 2019;
Trulsen et al., 2020; Zheng et al., 2020; Zhang and Benoit,
2021; Lawrence et al., 2021; Li et al., 2021; Zhang et al.,
2022, and the references therein). In summary, previous
studies showed that the non-equilibrium sea-state after a rapid
depth variation is characterized by:
(a) local variations of skewness and kurtosis of the free sur-

face elevation (FSE) 𝜂 (see their definitions in eqs. (1)
and (2)) and of the kinematics beneath waves;

(b) a rapid exchange of wave energy within the wave spec-
trum, including excitation of both free and bound high-
order harmonics and enhancement of wave energy level
in the low-frequency (infra-gravity) range;

(c) a heavy tail in the wave height distribution, i.e., higher
occurrence probability of extreme waves.

Zhang et al. (2022) (hereafter abbreviated as ZBM2022) in-
vestigated the equilibration process of an out-of-equilibrium
sea-state with refined numerical simulations. They showed
that the sea-state equilibration process after the depth transi-
tion consists of two stages: a fast modulation stage in a rel-
atively short scale (within a few wavelengths) in which the
NED mainly affects the wave statistics; and a slow modula-
tion stage in a longer scale (within dozens of wavelengths)
in which considerable wave spectral changes develop. The
cross-spectral analysis indicates that the spectral evolution in
the longer scale mainly results from the interaction among
free wave harmonics. It is evidently different from that in
the shorter scale, where the bound and free super-harmonics
play a dominant role. The incident wave nonlinearity af-
fects the magnitude of NED, but not the length of the scales.
However, the detailed investigation of the statistical distri-
butions of wave height and FSE during the two-scale non-
equilibrium wave evolution is neither covered in ZBM2022
nor studied in any existing literature. Thus, the present work
is dedicated to studying the wave statistical parameters and
the distributions during the stabilization process of the out-
of-equilibrium sea-state.

The statistical parameters are essential for describing the
sea-state and building probability distributions. Evaluation
of statistical parameters from the results of phase-averaged
models is therefore of great practical interest. In particu-
lar, the skewness and kurtosis of FSE, as measures of the
sea-state non-Gaussianity, received considerable attention.
Based on the Zakharov equation, Janssen (2003) and Mori
and Janssen (2006) elaborated the computation of the dy-
namic component of kurtosis resulting from nonlinear four-
wave interaction. The formulation is valid for weakly nonlin-
ear deep-water waves with narrow spectral bandwidth. Sub-
sequently, the computation has been extended to consider the
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effects of finite water depth, and finite spreading angle (see
e.g. Janssen and Onorato, 2007; Janssen and Bidlot, 2009;
Mori et al., 2011; Fedele, 2015). The computation of skew-
ness and the bound component of kurtosis which are caused
by the asymmetric wave profile (bound harmonics) are elab-
orated in Tayfun and Lo (1990) and Janssen (2009). The "to-
tal" kurtosis is then considered to be the algebraic sum of the
bound and the dynamic kurtosis components. Ducrozet and
Gouin (2017) compared the measured skewness and kurtosis
with the theoretical computations following the formulations
of Fedele et al. (2016) near the depth transition area (namely,
the so-called short scale). Here, we extend the discussion to
the long scale of the non-equilibrium phenomenon and fo-
cus on the 1DH case. In addition, the relationship between
skewness and kurtosis will be discussed.

Considering a sea-state to be stationary, ergodic, and a
Gaussian random process, the FSE 𝜂 then follows the nor-
mal distribution. By further assuming the wave spectrum to
be narrow-banded, the wave height 𝐻 (assumed to be twice
the crest height) follow the Rayleigh distribution (Longuet-
Higgins, 1952). These assumptions allow for straightfor-
ward estimations of all statistical properties of the sea-state,
thus are of great convenience in the design practices (Longuet-
Higgins, 1957; Ochi, 1998). However, they are sometimes
inaccurate in real seas, since the wave nonlinearity, the finite
spectral bandwidth, and the sea-state non-stationarity sig-
nificantly influence the distribution functions, in particular
regarding the shape of their tails (Nieto-Reyes, 2021). For
the extreme waves in severe sea-states, wave nonlinearity
is prominent. Both second-order (Longuet-Higgins, 1963;
Tayfun and Alkhalidi, 2016) and third-order nonlinear ef-
fects (Mori and Yasuda, 2002; Janssen, 2003; Onorato et al.,
2006; Mori and Janssen, 2006; Cherneva et al., 2009) could
result in strong non-Gaussian statistics. In coastal zones, the
finite water depth effects could also lead to non-Gaussianity
of the wave statistics (Bitner, 1980; Ochi and Ahn, 1995;
Cherneva et al., 2005). The stationary assumption is of-
ten taken for granted in theoretical statistical models, but
when the environment undergoes rapid changes, like strong
depth variations in the present study, the non-stationarity af-
fects the wave statistics significantly (Shemer et al., 2010;
Mendes et al., 2022; Mendes and Kasparian, 2023). Cur-
rently, the study of the non-stationary effects on anomalous
wave statistics is still limited. In addition to putting forward
a new model that requires a vast amount of validation work,
it is also of great interest to examine how well the existing
distribution models perform in describing non-equilibrium
wave statistics. The applicability and limitations of several
popular statistical models that are either frequently studied
in the scientific literature or used in engineering practices
will be analyzed and discussed.

The remainder of this paper is organized as follows: in
Section 2, the adopted statistical models are listed, including
the theoretical or semi-empirical statistical distributions of
FSE 𝜂 and wave height𝐻 (whose formulations are gathered
in appendices A and B, respectively), the theoretical formu-
lations for statistical moments are introduced. In Section 3,

the configurations and characteristics of the numerical sim-
ulations are briefly introduced. In Section 4, the theoretical
statistical models are assessed regarding their validity and
accuracy in describing the out-of-equilibrium sea-state. The
analysis of the relation between skewness and kurtosis, and
the statistics of the maximum wave heights, are discussed in
Section 5. Conclusions are summarized in Section 6.

2. Statistical moments and models of
probability distributions

2.1. Statistical moments
The first four statistical moments of the FSE play crucial

roles in characterizing a sea-state. The first- and second-
order moments are the mean ⟨𝜂⟩ (⟨⋅⟩ denotes a mean opera-
tion) and variance 𝜎2, respectively, which are sufficient for
fully describing the statistics of a Gaussian sea-state (Longuet-
Higgins, 1952). The non-Gaussianity can be characterized
by the third- and fourth-order moments, respectively skew-
ness and kurtosis, which are defined as:

𝜆3(𝜂) ≡

⟨

(𝜂 − ⟨𝜂⟩)3
⟩

𝜎3
=
⟨

𝜂̄3
⟩

, (1)

𝜆4(𝜂) ≡

⟨

(𝜂 − ⟨𝜂⟩)4
⟩

𝜎4
=
⟨

𝜂̄4
⟩

, (2)
with 𝜂̄ ≡ (𝜂 − ⟨𝜂⟩)∕𝜎 the normalized FSE.

In a Gaussian sea-state, 𝜆3 = 0 and 𝜆4 = 3 are expected.
The skewness 𝜆3 offers a measure of the mean asymmetry
of the wave profile in the vertical direction. A positive value
of 𝜆3 indicates sharp wave crests associated with second-
order bound harmonics. 𝜆4 is a measure of the "tailedness"
of a probability distribution in comparison to the normal dis-
tribution. Its value is positively correlated with the prob-
ability of extreme events. The excess kurtosis, defined as
𝜆40 ≡ 𝜆4 − 3, is also frequently used.
2.2. FSE distributions

For uncorrelated random waves, the probability density
function (PDF) of the FSE, 𝑝(𝜂), follows the Gaussian dis-
tribution. As the relative water depth decreases or the wave
steepness increases, the wave nonlinearity is enhanced, and
the non-Gaussianity develops in the random process of 𝜂.
Various FSE distributions have been put forward to model
wave nonlinearity with different approaches. As summa-
rized by Machado (2003), the statistical models of FSE are
typically built based on: (a) statistical moments; (b) pro-
cess characteristic function; (c) transform Gaussian method.
In addition, (d) empirical fitting method and (e) asymptotic
(Stokes) representation of FSE are commonly used as well.
The list of the PDF models is long and will not be elaborated
here, the readers are suggested to refer to Ochi (1998); Tay-
fun and Alkhalidi (2020) for a more detailed introduction to
various FSE distributions.

In this work, seven PDF models of FSE are assessed:
1. the classical Gaussian distribution (denoted as 𝑝𝐺) is

firstly selected for comparative purposes.
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2. the extension of 𝑝𝐺 with the Gram-Charlier series in-
troduced by Bitner (1980) (denoted as 𝑝𝐵). Compared
to 𝑝𝐺, the 𝑝𝐵 model is built using 𝜆3(𝜂) and 𝜆4(𝜂) as
inputs, and shows good performance in describing the
non-Gaussian statistics in coastal areas with varying
bathymetry.

3. the second-order deep-water model by Socquet-Juglard
et al. (2005) (denoted as 𝑝𝑆𝐽 ), which has been applied
to study non-stationary wave statistics.

4. the second-order finite-depth model in its simplified
form, recently introduced by Tayfun and Alkhalidi (2020)
(denoted as 𝑝𝑇𝐴). It shows plausible performance in
predicting statistics of shoaling waves.

5. the exponential Gamma model used by Herrman et al.
(1997) (denoted as 𝑝𝐻 ).

6. the Gamma model recently proposed by Bolles et al.
(2019) (denoted as 𝑝Γ). This model successfully pre-
dicts the increased occurrence of extreme waves en-
countering a vertical step of the seabed in experiments
with irregular long-crested waves.

7. a new model proposed in this study in lognormal form
(denoted as 𝑝𝐿𝑁 ).

These models belong to three different types: 𝑝𝐺 corre-
sponds to a linear model; both 𝑝𝑆𝐽 and 𝑝𝑇𝐴 models are based
on Stokes second-order wave theory, while 𝑝𝐵 , 𝑝Γ, 𝑝𝐻 and
𝑝𝐿𝑁 models are all 3-parameters models involving location,
scale, and shape parameters, which are obtained by fitting
the statistical moments. Detailed formulations of the above-
mentioned statistical models are given in appendix A.
2.3. Wave height distributions

In a Gaussian sea-state, the distribution of the normal-
ized wave height𝑃 (𝐻̄) (with 𝐻̄ ≡ 𝐻∕𝜎) follows the Rayleigh
distribution, with𝐻 assumed to be twice the wave crest height.
This approximation is valid only for linear waves with nar-
row spectral bandwidth in deep water. For nonlinear waves
with arbitrary spectral width in real seas, the Rayleigh dis-
tribution is known to over-predict the occurrence probability
of large waves (Forristall, 1978).

The development of theoretical nonlinear wave height
distribution models mainly relies on the narrow-band assump-
tion. Complicated physical processes, like wave breaking, fi-
nite depth, or broad-band effects, are often incorporated into
statistical models by means of empirical fitting. Again, a
comprehensive review of all existing wave height distribu-
tions is beyond the scope of the present work. Many of the
existing models are listed and commented on, for instance in
Katsardi et al. (2013); Karmpadakis et al. (2020) and refer-
ences therein.

We choose to focus on the following five models among
the ones presented in the literature:

1. a linear quasi-deterministic (Q-D) model by Boccotti
(2000) (denoted as𝑃𝐵) which has been validated using
measured oceanic waves (Tayfun and Fedele, 2007).
We choose 𝑃𝐵 instead of the Rayleigh model to rep-
resent the expected distribution of linear waves with
finite spectral bandwidth;

2. a well-known distribution of Weibull shape by For-
ristall (1978) (denoted as 𝑃𝐹 ), which is an empirical
model fitted for the field measurement in the Gulf of
Mexico;

3. an expansion of the Q-D model by Alkhalidi and Tay-
fun (2013) (denoted as 𝑃𝐴𝑇 ) with Gram-Charlier se-
ries that incorporates both third-order nonlinearity and
finite spectral bandwidth;

4. a variation of the empirical model by Glukhovskiy (1966)
as proposed by Van Vledder (1991) (denoted as 𝑃𝐺𝐾 ),
this kind of model is considered because it takes the
local water depth into account.

5. a composed Weibull distribution introduced in Wu et al.
(2016) (denoted as 𝑃𝑊 ), which is fitted for shallow
water waves with wave height up to the breaking limit.

The formulations of these models are given in appendix B.
It should be pointed out that the recent work of Mendes et al.
(2022) is not included for comparison here, despite its ability
in predicting the non-stationary wave statistics of waves over
an uneven bottom. Because the target of this work is to eval-
uate statistical models for practical purposes, the simplicity
of the formulation is an important criterion when choosing
candidate models.
2.4. Computation methods of skewness and

kurtosis
2.4.1. Evaluation of skewness and kurtosis based on

PDF
Given a continuous PDF of the FSE, 𝑝(𝜂̄), the skewness

𝜆3 and kurtosis 𝜆4 can be evaluated as

𝜆3(𝜂̄) = ∫

∞

−∞
𝜂̄3𝑝(𝜂̄)d𝜂̄, (3)

𝜆4(𝜂̄) = 𝜆40 + 3 = ∫

∞

−∞
𝜂̄4𝑝(𝜂̄)d𝜂̄. (4)

For an empirical PDF built from a FSE time record, with
the integrals evaluated in a discrete fashion, the empirical
skewness and kurtosis are obtained. If the input 𝑝(𝜂̄) cor-
responds to a theoretical distribution, then the outputs of
eqs. (3) and (4) represent the model predictions of skewness
and kurtosis.

Typically, a theoretical PDF of FSE requires statistical
moments as inputs to determine its characteristics, like po-
sition, scale, and shape parameters. The capability of a PDF
model of this type can be illustrated by the Skewness–Kurtosis
(S–K) plot, expressing kurtosis as a function of skewness. In
particular, the S–K plot shows the range of non-Gaussianity
that a PDF model could describe. In the S–K plot, it is
known that a 2-parameter distribution is represented by a
single point (e.g. the Gaussian distribution corresponds to
(𝜆3, 𝜆40) = (0, 0)), a three-parameter model corresponds to
a curve, and a model of higher dimension covers an area.
Particular interest is paid here to 3-parameter models, not
only because they are commonly used in practical applica-
tions, but also because they can provide a simple and general
(sea-state independent) S–K relation. Furthermore, in some
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of the models, physical properties like wave steepness, rel-
ative water depth or bottom gradient are required as inputs
for better describing the wave characteristics. Such models
predict S–K relations which are dependent on the sea-state,
and the model capability largely depends on how well the
physical properties describe the wave characteristics.

Among the seven PDF models considered in this study
(see section 2.2 and appendix A), Fig. 1 shows the S–K re-
lationships for 𝑝𝐺, 𝑝𝐻 , 𝑝𝑇𝐴, 𝑝Γ and 𝑝𝐿𝑁 . These five models
are also compared with the result by Mori and Kobayashi
(1998) who derived a theoretical expression of the S–K re-
lationship for waves of second-order in steepness, having a
quadratic form, as a nonlinear reference:

𝜆40 =
16
9
𝜆23. (5)

As already mentioned, the Gaussian distribution 𝑝𝐺 is
the linear expectation of the S–K relationship, as the single
point (0, 0). Model 𝑝𝐵 is not included because it is a four-
parameter model, requiring both 𝜆3 and 𝜆40 as inputs, there-
fore the results of eqs. (3) and (4) are analytically equal to
the input 𝜆3 and 𝜆40. The second-order model 𝑝𝑆𝐽 is also
excluded because it is a three-parameter model (requiring
first- and second-order moments and wave steepness as in-
puts). With wave steepness required as an input, the S–K
relationship predicted by 𝑝𝑆𝐽 is not universal but dependent
upon the sea-state.

The S–K relation given by 𝑝𝐻 is implicit, but can be eval-
uated numerically by varying 𝑎0 from −∞ to 0 in eqs. (A.6–
A.7). The S–K relation of 𝑝𝐿𝑁 model is obtained numer-
ically from eqs. (A.25–A.26), and can be approximated as
𝜆40 ≈ 1.85𝜆23. The simplified model 𝑝𝑇𝐴 considers 𝜆3 as
the only input, resulting in a one-parameter model. In this
model, 𝜆3 is used to determine other parameters, including
𝜆40. The simplified model 𝑝𝑇𝐴 predicts a cubic relation-
ship between 𝜆3 and 𝜆40, but the contribution of the cubic
term is rather low in comparison to the quadratic term, see
eq. (A.14). According to Bolles et al. (2019), the Gamma
distribution is robust and provides "near-complete" statisti-
cal description of the surface displacement for the out-of-
equilibrium sea-state after abrupt depth change. The S–K
relation predicted by 𝑝Γ is of a simple quadratic form, as
provided in eq. (A.21).

It is noted from Fig. 1 that, in essence, the S–K relation-
ships predicted by 𝑝𝐻 , 𝑝𝑇𝐴, 𝑝Γ, and 𝑝𝐿𝑁 follow a similar
general trend. Remarkably, models 𝑝𝐿𝑁 and 𝑝𝐻 predict a
quite similar S–K relationship, also very close to the second-
order analytical result eq. (5) by Mori and Kobayashi (1998).
When compared with these three models, 𝑝Γ and 𝑝𝑇𝐴, which
are very close to each other, give lower 𝜆40 for the same 𝜆3 in
the range 𝜆3 > 0.3. This first assessment of models already
provides valuable insight into their modelling capabilities.
In particular, 𝑝𝐿𝑁 and 𝑝𝐻 on the one hand, and 𝑝Γ and 𝑝𝑇𝐴on the other, can be expected to perform almost identically
when applied to FSE records.

0 0.2 0.4 0.6 0.8 1 1.2
-0.5

0

0.5
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Figure 1: Skewness–Kurtosis (S–K) relationships associated
with five theoretical probability distributions of FSE, plus the
second-order relation (5) from Mori and Kobayashi (1998)

2.4.2. Evaluation of skewness and kurtosis based on
wave spectrum

The theoretical 𝜆3 and 𝜆40 are derived for unidirectional,
weakly-nonlinear and narrow-banded waves in the flat bot-
tom case with finite water depth. The wave field is assumed
to be homogeneous (i.e. the wave spectrum keeps its shape
unchanged during wave evolution). The theoretical skew-
ness 𝜆3,𝑁𝐵 (with subscript NB denoting narrow band) reads
(Fedele et al., 2016)

𝜆3,𝑁𝐵 = 6𝜖𝑚
(

𝛼𝑠 + Δ
)

, (6)
where

𝛼𝑠 =
3 −𝑄2

𝑚

4𝑄3
𝑚
,Δ = −1

4
𝑔ℎ

𝑔ℎ − 𝑐2𝑔,𝑚

[

2
1 −𝑄2

𝑚
𝑄𝑚

+ 1
𝜇𝑚

]

, (7)

where 𝑘𝑚 denotes the wave number corresponding to the
mean frequency 𝜔𝑚 = 𝑚1∕𝑚0 via linear dispersion rela-
tionship 𝜔2

𝑚ℎ = 𝑔𝜇𝑚𝑄𝑚 (with 𝑚1 being the first-order mo-
ment of wave spectrum, 𝜇𝑚 = 𝑘𝑚ℎ and 𝑄𝑚 = tanh𝜇𝑚),
𝜖𝑚 = 𝑘𝑚𝜎, 𝑐𝑔,𝑚 = d𝜔𝑚∕d𝑘.

The theoretical excess kurtosis 𝜆40,𝑁𝐵 comprises a bound
component 𝜆𝑏40,𝑁𝐵 due to non-resonant interactions and a
dynamic component 𝜆𝑑40,𝑁𝐵 due to (quasi-) resonant inter-
actions. It is formulated as

𝜆40,𝑁𝐵 = 𝜆𝑏40,𝑁𝐵 + 𝜆𝑑40,𝑁𝐵 . (8)

The expression of the bound component 𝜆𝑏40,𝑁𝐵 for narrow-
banded waves in intermediate water reads (Janssen, 2009;
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Fedele et al., 2016)

𝜆𝑏40,𝑁𝐵 = 4
3
𝜆23,𝑁𝐵

[

1 +
𝛽𝑠 + 𝛾𝑠

2
(

𝛼𝑠 + Δ
)2

]

, (9)

where

𝛽𝑠 =
24 + 3

(

1 −𝑄2
𝑚
)3

64𝑄6
𝑚

, 𝛾𝑠 = −
𝛼2𝑠
2
. (10)

Under deep water condition, the dynamic component 𝜆𝑑40,𝑁𝐵is expressed as a six-dimensional integral (Janssen, 2003).
Assuming a Gaussian-shape spectrum, 𝜆𝑑40,𝑁𝐵 is proportional
to the square of the Benjamin-Feir index (BFI) in the long-
time limit (Mori and Janssen, 2006)

𝜆𝑑40,𝑁𝐵 = 𝜋
√

3
BFI2, (11)

where BFI =
√

2𝜋𝜖𝑚𝑄𝑝, with 𝑄𝑝 = 2 ∫ ∞
0 𝑓𝑆2d𝑓∕𝑚2

0 be-
ing a measure of spectral width. The extension of dynamic
excess kurtosis to intermediate water depth is achieved by
replacing the BFI in eq. (11) with its shallow water version,
𝐵𝑠 (Janssen and Onorato, 2007). The expression of 𝐵𝑠 is

𝐵2
𝑠 = −BFI2

(𝑐𝑔,0
𝑐0

)2 𝑔𝑋𝑛𝑙

𝑘0𝜔0𝜔′′
0
, (12)

where the subscript 0 denotes the carrier wave’s property,
𝜔′′
0 denotes the second-order derivative of 𝜔0(𝑘0), and 𝑋𝑛𝑙the nonlinear interaction coefficient, see their expressions in

Janssen and Onorato (2007).
The previous formulations of 𝜆3,𝑁𝐵 and 𝜆40,𝑁𝐵 are sub-

ject to several assumptions, including weakly nonlinear and
narrow-banded waves, constant water depth, and homoge-
neous wave field. As was pointed out by Ducrozet and Gouin
(2017), applying the formulations of 𝜆3,𝑁𝐵 and 𝜆40,𝑁𝐵 in
the study of depth-induced NED would more or less violate
the above-mentioned assumptions. The parameters 𝜆3,𝑁𝐵and 𝜆40,𝑁𝐵 are key parameters for operational freak wave
warning systems, as they can be evaluated on the basis of
the phase-averaged output spectrum. Therefore, the perfor-
mance of these theoretical formulations is worth investigat-
ing in the depth-changing areas and for the non-equilibrium
sea-states, to update our knowledge of the freak wave warn-
ing in such regions.

3. Dataset from numerical simulations
In this work, the statistical analysis is carried out on the

numerical data obtained recently, whose spectral properties
and the corresponding implications on the non-equilibrium
wave evolution have been reported in ZBM2022.

The sketch of the bottom profile in the numerical flume
is shown in Fig. 2. The bathymetry consists of a deeper flat
zone with uniform water depth ℎ1 = 0.53 m and a shallower
zone with ℎ2 = 0.11 m, connected by a steep (1/3.81) plane

slope. The origin of the 𝑥-axis is set at the end of the slope.
Relaxation zones are set on both sides of the flume for wave
generation and absorption, as indicated in Fig. 2. The waves
are imposed at 𝑥 = −2.7 m (1.1 m before the up-slope) and
damped after 𝑥 = 43.6 m. The incident wave trains are de-
scribed by the JONSWAP spectrum. The spectral peak pe-
riod 𝑇𝑝 = 1.1 s and spectral shape parameter 𝛾 = 3.3 are
fixed throughout the study. The significant wave height 𝐻𝑠varies from 0.01 m to 0.035 m for different levels of nonlin-
earity. The key wave parameters, together with the relative
water depth 𝜇, wave steepness 𝜀 ≡ 𝑘𝑝𝐻𝑠∕(2

√

2) and Ursell
number 𝑈𝑟 = 𝜀∕𝜇3 in both the deeper and the shallower re-
gions are listed in Table 1. For each case, a simulation lasts
for 500 s and is repeated 10 times with different sets of ran-
dom phases.

The numerical investigation is carried out with a fully
nonlinear potential flow model, Whispers3D (W3D). Its math-
ematical formulations, numerical methods, wave generation
and damping techniques have been presented in existing lit-
erature, (see Raoult et al., 2016; Benoit et al., 2017; Simon
et al., 2019; Zhang and Benoit, 2021, for instance), and are
not duplicated here. Furthermore, the validation against the
experimental results of Trulsen et al. (2020) and the choices
of numerical parameters are given in ZBM2022.

Table 1
Summary of wave field parameters.

Case 𝐻𝑠 [m] 𝑇𝑝 [s] Deeper/shallower area

𝜇 𝜀 𝑈𝑟

1 0.010 1.1 1.85/0.64 0.012/0.020 0.0019/0.077
2 0.015 1.1 1.85/0.64 0.019/0.031 0.0029/0.116
3 0.020 1.1 1.85/0.64 0.025/0.041 0.0039/0.155
4 0.025 1.1 1.85/0.64 0.031/0.052 0.0049/0.194
5 0.030 1.1 1.85/0.64 0.037/0.062 0.0058/0.232
6 0.035 1.1 1.85/0.64 0.043/0.073 0.0068/0.271

a For all cases, 𝛾 = 3.3, deeper region depth ℎ1 = 0.53 m,
shallower region depth ℎ2 = 0.11 m.

b Each case is repeated 10 times with different sets of phases.

In the simulations, the NED develops as the incident waves
pass over a slope and gradually adapt to the shallower depth
after the slope. As was shown in the work of ZBM2022,
the NED induced by depth variations comprises two spatial
scales. In the relatively shorter scale (0 ∼ 5𝐿𝑝 after depth
transition), skewness and kurtosis are locally enhanced, whereas
the spectral width and peak frequency show limited varia-
tions. However, the situation is inverse in the longer scale
(5 ∼ 30𝐿𝑝 after depth transition): The statistical moments
nearly converge to steady levels, meanwhile, the spectral shape
significantly modulates in the range around the spectral peak.

The FSE is computed with a constant time step Δ𝑡 =
0.01 s (i.e., with sampling frequency 100 Hz) at 116 loca-
tions along the flume during the simulations. In each of the
two areas close to the relaxation zones, [−2.7,−2.0] m and
[43.0, 43.6] m, 5 probes with uneven spacing are set for eval-
uation of reflection. In the area [−2, 2.8] m, 25 probes with
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slope: 1/3.81
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Figure 2: Sketch of the bathymetry adopted in the numerical simulations, with 𝐿 = 43.6 m denoting the length of the shallower
region, and gray zones representing the relaxation zones.

0.2 m interval, and in the area [3.0, 43.0] m, 81 probes with
0.5 m interval are set to capture the wave evolution in short
and long scales, respectively. The results of the validity as-
sessment of the theoretical statistical distributions and mo-
ments are displayed at eight representing positions, four lo-
cated in the short scale and four in the long scale. In the
short scale, we choose 𝑥1 = −2.7 m (probe #1) located at
the wavemaker position, 𝑥16 = 0 m (probe #16) located at
the end of the slope, 𝑥20 = 0.8 m (probe #20) where local
maximum values of skewness and kurtosis are achieved and
𝑥24 = 1.6 m (probe #24) where skewness and kurtosis de-
crease significantly. In the long scale, we choose 𝑥45 = 10 m
(probe #45) where an evident peak frequency downshift oc-
curs (see Fig. 6 and Fig. 9 in ZBM2022), 𝑥65 = 20 m (probe
#65) is still in the range of long-scale non-equilibrium sea-
state evolution, 𝑥85 = 30 m (probe #85) where the shallow-
water steady states are achieved, and 𝑥105 = 40 m (probe
#105) where the sea-states is in a new equilibrium state.

The statistical analyses are performed for all cases and
discussed for cases 1, 3, and 6 with increasing 𝜀 to illustrate
the influence of wave nonlinearity (see Table 1).

4. Probability distribution analysis
4.1. Assessment of FSE distributions

Fig. 3 shows the FSE distributions in the short scale. We
see in Figs. 3(a.1-a.3), the generated waves leaving the wave-
maker are Gaussian, this is mainly because the incident sea-
states are characterized by relatively small Ursell numbers,
and are generated with the linear superposition method in the
relaxation zone. The theoretical and empirical distributions
are almost superimposed. Comparing probes #16 and #1, it
is noticed from Figs. 3(b.1-b.3) that, as waves propagate and
pass over the slope, small deviations from the Gaussian dis-
tribution develop. The limited deviations from Gaussian can
be described by all non-Gaussian models, with only minor
differences among them.

As waves propagate over the shallower flat region (𝑥 >
0 m) to probe #20, the sea-states in all three cases depart sig-
nificantly from Gaussian distribution. From Figs. 3(c.1-c.3),
we notice the sea-states are evidently non-Gaussian, even
in case 1 with the mildest wave steepness 𝜀. At this loca-
tion, the level of sea-state non-Gaussianity increases with
stronger incident wave nonlinearity. The distributions 𝑝𝐿𝑁(green curves), 𝑝𝐻 (blue curves) and 𝑝𝑇𝐴 (cyan curves) all

provide quite accurate predictions of the empirical FSE dis-
tribution. Notice that the G–C model 𝑝𝐵 becomes negative
(singular points in log scale) for some negative values of 𝜂̄
in all three cases. Such a non-physical behavior is because
negative values in the G–C series could be achieved for large
𝜆3 and 𝜆40, limiting the valid range of G–C type models for
strongly nonlinear scenarios. In Figs. 3(d.1-d.3), where the
effects of NED decline considerably, the deviations of em-
pirical FSE distributions from 𝑝𝐺 decrease correspondingly
in comparison to those at probe #20. At this location, 𝑝𝐻 ,
𝑝𝑇𝐴 and 𝑝𝐿𝑁 still provide good estimates of the FSE distri-
bution. 𝑝𝐵 breaks again for prediction of negative 𝜂̄ in case
6 where the wave nonlinearity is the strongest. The models
𝑝𝐵 and 𝑝𝑆𝐽 underestimate the probability of large values of
𝜂̄ in all three cases at all positions.

Fig. 4 shows the FSE distributions in the long scale. As a
general remark, when waves propagate in the area relatively
far from the depth transition, the deviations of the empirical
FSE distributions from Gaussian for positive 𝜂̄ are trivial.
However, they are still non-Gaussian, in the sense that the
probability density of negative 𝜂̄ is clearly lower than Gaus-
sian prediction. It is anticipated that the non-Gaussianity is
attributed to the finite water depth effects, as the deviations
do not exhibit noticeable change with increasing 𝜀 in three
cases. Among all models, 𝑝𝐵 agrees slightly better with the
empirical distribution, and no anomalous negative values ap-
pear since the values of 𝜆3 and 𝜆40 remain at low levels.
The models 𝑝𝐻 , 𝑝𝑇𝐴, and 𝑝𝐿𝑁 also provide reasonable pre-
dictions of the empirical FSE distribution, despite that they
overestimated the positive tails in case 6 by about 10%.

As waves propagate over significant depth change, the
NED affects the sea-state in both short and long spatial scales.
𝑝𝐵 shows the best performance in predicting the long-scale
evolution of the empirical PDF, however, it is subject to un-
realistic negative PDF in the short scale. 𝑝𝑆𝐽 is not able to
capture the non-Gaussian behavior in the short scale. Both
are not the best choice in the current scenario. The mod-
els of Herrman et al. (1997) (𝑝𝐻 ), Tayfun and Alkhalidi
(2020) (𝑝𝑇𝐴) and the lognormal distribution (𝑝𝐿𝑁 ) provide
excellent predictions of the empirical PDF evolution in the
short scale, and the predictions remain acceptable in the long
scale. 𝑝𝑇𝐴 has slightly better performance in the short scale
where 𝜆3 and 𝜆40 achieve their maximum values. However,
the empirical fitting of Tayfun and Alkhalidi (2020) is valid
for 0 < 𝜆3 < 1.5, the performance of this model may de-
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Figure 3: Short-scale evolution of PDF of 𝜂̄ in cases 1, 3, and 6 shown in panels (n.1), (n.2) and (n.3) respectively, with n
assuming a, b, c, or d, representing the four probe positions. The locations are indicated on top of the upper row of panels.

teriorate when applied out of this range. Both 𝑝𝐿𝑁 and 𝑝𝐻require 𝜆3 being non-negative, and provide very similar pre-
dictions. The parameters in lognormal distribution are rel-
atively more straightforward to compute than those in Her-
rman et al. (1997) (comparing eq. (A.6) to eqs. (A.23-A.25)).
We recall that all theoretical models are used here out of their
nominal validity range due to the inhomogeneity of the me-
dia and the non-stationarity of the random process. There-
fore, the good performances of 𝑝𝐻 , 𝑝𝑇𝐴 and 𝑝𝐿𝑁 indicate
the robustness of these three models.

It should be noted that the Gamma distribution 𝑝Γ is not
included in Figs. 3 and 4 only for the sake of clarity. The
prediction of 𝑝Γ is nearly identical with that of 𝑝𝑇𝐴. So the
comments to 𝑝𝑇𝐴 also apply to 𝑝Γ. Besides, the predictions
of 𝑝𝐻 and 𝑝𝐿𝑁 are very similar to each other as well. Such
observations are in line with the indication of the S–K rela-
tionship provided in Fig. 1: the S–K relationships predicted
by 𝑝𝐻 and 𝑝𝐿𝑁 being very close, the same for 𝑝Γ and 𝑝𝑇𝐴.
The S–K relationship is considered a robust indicator of the
capability of the FSE distribution model.
4.2. Assessment of wave height distributions

The distribution of crest-to-trough height of linear waves
is dependent on the spectral width. The quasi-determinism
(Q-D) model of Boccotti (2000) (𝑃𝐵) is adopted as the linear
expectation for finite-banded waves, instead of the Rayleigh
distribution. At the wave maker, the sea-states are quasi-

Gaussian according to previous analyses of the FSE distribu-
tions. Correspondingly, we observe in Figs. 5(a.1-a.3) that
the Q-D model 𝑃𝐵 describes well the empirical wave height
distributions in all three cases at the wavemaker. The nonlin-
ear models (except for 𝑃𝑊 shown in cyan lines) show simi-
lar results as 𝑃𝐵 . In Figs. 5(a.1-d.1), the agreement between
𝑃𝐵 and empirical wave height distributions remains good at
four positions in case 1, because of the low level of sea-state
nonlinearity.

In Figs. 5(c.2-c.3), the empirical distributions deviate
significantly from 𝑃𝐵 . It indicates more freak waves man-
ifest than expected at the position where 𝜆3 and Λ40 achieve
their maximum values and NED takes the most pronounced
effects. The deviation is more or less captured by 𝑃𝐴𝑇 , al-
though 𝑃𝐴𝑇 underestimates the probability of freak waves.
In Figs. 5(d.2-d.3), as the NED effects decline, the probabil-
ity of freak waves decreases correspondingly. The model
𝑃𝐴𝑇 shows better performance compared with the others.
Overall, for the short-scale evolution of a non-equilibrium
sea-state, 𝑃𝐴𝑇 seems to be suitable for describing the wave
height distribution. It is noticed that, for sea-states with non-
trivial nonlinearity, the model 𝑃𝑊 performs better (see pan-
els c.2 and c.3 for instance) than for the (quasi-) linear waves.

The wave height distribution evolution in the long scale
is shown in Fig. 6. We see that nonlinear models 𝑃𝐹 and
𝑃𝐺𝐾 provide similar predictions as the linear model 𝑃𝐵 in all
panels. These three models overestimate the tail part of the
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Figure 4: Long-scale evolution of PDF of 𝜂̄ in cases 1, 3, and 6 shown in panels (n.1), (n.2) and (n.3) respectively, with n
assuming a, b, c, or d, representing the four probe positions. The locations are indicated on top of the upper row of panels.

empirical distribution to some extent. In the meantime, 𝑃𝐴𝑇captures well the evolution of empirical distribution in cases
1 and 3, shown in Figs. 6(a.1-d.1) and (a.2-d.2). In case 6, the
empirical distribution for large waves cannot be predicted by
any of the tested models, and the empirical wave height prob-
ability falls between the predictions of 𝑃𝐴𝑇 and 𝑃𝐵 . In the
long-scale evolution, the NED results in lower freak wave
probability than the linear expectation, therefore it plays a
role in "protecting" the engineering structures. However, a
wave height distribution model that is suitable for the de-
scription of the sea-states with negative excess kurtosis is
still needed.

It is worth mentioning that an accurate prediction of wave
statistics in the long scale after the depth transition is very
challenging. This is because the depth-induced NED would
considerably enhance the nonlinearity of high waves, result-
ing in more active and rapid energy transfer among free and
bound super-harmonics. As a result, the re-established sea-
state in the long scale is clearly different from what we ex-
pect for a similar sea-state but in a steady regime. In other
words, the sea-state keeps a memory about the short-scale
NED evolution, and successful prediction of long-scale sta-
tistical evolution would require the short-scale wave dynam-
ics as prior information.

In both Figs. 5 and 6, when the wave nonlinearity is
relatively low, 𝑃𝑊 considerably overestimates the empiri-
cal wave height distribution for the largest waves. How-

ever, when waves are of relatively high nonlinearity, 𝑃𝑊provides relatively reasonable predictions, although not the
best when compared to other models. This is expected if one
notices that, given 𝜎 → 0 (i.e. infinitesimal wave height),
𝐻̄𝑚𝑎𝑥 → ∞, 𝐾 → 2, 𝜇0 → 1∕2𝛼 (𝜇0 ≈ 2.273 for 𝛼 = 0.22),
we have 𝜉 → 0 (for the definitions of these parameters, the
readers are referred to appendix B). As a result, the Pareto
part of eq. (B.41) would take the following limit:

lim
𝜉→0

𝑃𝑊 (𝐻̄) = lim
𝜉→0

[

1 + 𝜉
(

𝐻̄ − 4
)]− 1

𝜉 exp
(

−𝜇0
)

(13)
= lim
𝜉→0

exp
(

4 − 1
2𝛼

− 𝐻̄
)

, (14)

where 𝐻̄ ∈ [4,∞]. Being proportional to exp (−𝐻̄), 𝑃𝑊 (𝐻̄)
significantly overpredicts the probability of large waves (with
𝐻̄ > 4) in sea-states with low nonlinearity. Thus, it should
be noticed that 𝑃𝑊 (𝐻̄) is more suitable for sea-states with
relatively strong nonlinearity. This feature was not men-
tioned in Wu et al. (2016).

5. Analysis of statistical moments and freak
wave statistics

5.1. Spatial evolution of skewness and kurtosis
We first show the comparison between the empirical 𝜆3and 𝜆40 and those predicted by the narrow-band weakly non-
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Figure 5: Short-scale evolution of EDF of 𝐻̄ in cases 1, 3, and 6 shown in panels (n.1), (n.2) and (n.3) respectively, with n
assuming a, b, c, or d, representing the four probe positions. The locations are indicated on top of the upper row of panels.

linear theory in cases 1, 3, and 6. Although the underlying
assumptions of the theory are more or less violated in the
current scenario, this comparison is still considered valuable
because (1) Judging from the spectral peak wave steepness
𝜀 = 0.062 ∼ 0.073 given in Tab. 1, waves are of intermediate
nonlinearity in an averaged sense, despite some highly non-
linear extreme waves occurred locally over the submerged
step; (2) The bottom slope changes the water depth, yet our
main interest lies in the deeper and the shallower flat regions;
(3) Waves evolve in an inhomogeneous medium, with spec-
tral shape modulating in space. The computations of 𝜆3,𝑁𝐵and 𝜆40,𝑁𝐵 adopt the local spectral parameters as inputs,
such that the inhomogeneity is incorporated to some extent.

Fig. 7 shows the spatial evolution of skewness and kur-
tosis: the evolution in the shorter scale is shown in panels
(a.1) and (b.1) and in the longer scale in panels (a.2) and
(b.2). It is noticed in Fig. 7(a.1) that 𝜆3,𝑁𝐵 agrees well with
the empirical 𝜆3 before the end of the slope (𝑥 < 0 m). As
waves enter the shallower region (𝑥 > 0 m), the empirical 𝜆3evidently modulates due to the development and then atten-
uation of NED during the two-stage non-equilibrium wave
evolution. However, 𝜆3,𝑁𝐵 remains nearly unchanged and is
always lower than the empirical 𝜆3. This is because, as in-
dicated in eq. (6), 𝜆3,𝑁𝐵 is linearly dependent on 𝜖𝑚 = 𝑘𝑚𝜎for a given relative water depth. Within the shallower flat
region, neither the mean steepness 𝜖𝑚 nor the mean relative
water depth 𝑘𝑚ℎ2 changes remarkably. As a result, 𝜆3,𝑁𝐵

varies very mildly over the shallower region and is incapable
of capturing the local enhancement of skewness due to NED.

In Figs. 7(b.1–b.2), the total theoretical kurtosis 𝜆40,𝑁𝐵
(plotted with solid lines) and its bound component 𝜆𝑏40,𝑁𝐵(plotted with dash lines) are shown, the differences between
the two curves indicate the dynamic contributions of kurto-
sis 𝜆𝑑40,𝑁𝐵 . The evolution trend of 𝜆𝑏40,𝑁𝐵 is very similar
to that of 𝜆3,𝑁𝐵 , capturing the evolution of 𝜆40 only before
the shallower region where the NED effects are small. This
is again because 𝜆𝑏40,𝑁𝐵 is proportional to 𝜖2𝑚 for a given
relative water depth. The evolution of 𝜆40,𝑁𝐵 is, however,
significant due to the negative contributions of the dynamic
𝜆𝑑40,𝑁𝐵 . The negative 𝜆𝑑40,𝑁𝐵 is achieved resulting from the
interaction factor 𝑋𝑛𝑙, which is 0 for 𝑘𝑚ℎ = 1.363 and de-
creases monotonically to −∞ as 𝑘𝑚ℎ → 0. It means that
the wave nonlinear interaction that stabilizes the sea-state
rapidly becomes strong in shallow water, soon the weakly
nonlinear assumption is violated and eq. (11) becomes inef-
fective. For this reason, 𝜆40,𝑁𝐵 overestimates the stabilizing
effects due to nonlinear interactions in sufficiently shallow
water (after 𝑥 = 0 in the present cases), and the evolution of
𝜆40,𝑁𝐵 over the submerged step is not shown.

Then, 𝜆3 and 𝜆40 are computed by integrating the theo-
retical FSE distribution models 𝑝𝐻 , 𝑝𝑇𝐴, and 𝑝𝐿𝑁 for cases
1, 3, and 6. The short-scale evolutions of 𝜆3 and 𝜆40 are
presented in Figs. 8(a.1–b.1) and the long-scale evolution in
Figs. 8(a.2–b.2). Only the legends for case 1 is shown (due to
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Figure 6: Long-scale evolution of EDF of 𝐻̄ in cases 1, 3, and 6 shown in panels (n.1), (n.2) and (n.3) respectively, with n
assuming a, b, c, or d, representing the four probe positions. The locations are indicated on top of the upper row of panels.

space limitations), the curves of other cases follow the same
configuration of line styles but in different colors (case 3 in
red; and case 6 in blue). It is seen in Figs. 8(a.1) and (a.2)
that, the curves of 𝜆3 obtained by integrating 𝑝𝐻 and 𝑝𝐿𝑁are superimposed with the empirical 𝜆3 in both scales of all
three cases. This is simply because both models require the
empirical 𝜆3 as an input. The computed skewness 𝜆3 based
on 𝑝𝑇𝐴 is very similar to the empirical 𝜆3, only some mi-
nor differences are noticed in case 6. It also indicates that
fitted expressions (A.11–A.13) are quite accurate for rela-
tively large skewness. In Fig. 8(b.1), it is seen that, in all
three cases, the predictions of 𝜆40 by 𝑝𝐻 and 𝑝𝐿𝑁 are very
close to each other and are slightly higher than the empirical
values of 𝜆40. Meanwhile, 𝜆40 evaluated with 𝑝𝑇𝐴 consid-
erably underestimates the empirical kurtosis, indicating that
the regression formula (A.14) is relatively less accurate in
comparison to 𝑝𝐻 and 𝑝𝐿𝑁 . In Fig. 8(b.2), it is interesting
to see that all three models provide positive predictions of
𝜆40, and none of them can capture the negative empirical
𝜆40 in the simulations.

From Fig. 7, it is seen that the skewness and kurtosis are
significantly underestimated by the weakly nonlinear theory
after significant depth change, especially in the short scale
of a few wavelengths. This is because the second-order mo-
ment 𝜎2(𝜂) and peak frequency 𝑓𝑝 do not respond signifi-
cantly to the NED after depth change, it is therefore challeng-
ing to compute 𝜆3 and 𝜆4 on the basis of the local estimates

of steepness and relative water depth. Therefore, applying
the theoretical formulations of kurtosis without any further
treatment in a freak wave warning system could result in a
considerable underestimation of freak wave risks in coastal
areas with uneven bathymetry. From Fig. 8, it seems that
evaluating kurtosis based on skewness is a promising alter-
native.
5.2. Relationship between skewness and kurtosis

As discussed in sec. 2.4.1 and illustrated in Fig. 1, the
S–K plot characterizes the non-Gaussianity of a sea-state. It
has been used in the analysis of non-equilibrium statistics,
for instance in Kashima and Mori (2019). With eqs. (3) and
(4), the S–K relation of any FSE PDF is readily obtained
(either analytically or numerically). Here, the sea-state in-
dependent S–K relations predicted by models 𝑝𝐻 , 𝑝𝑇𝐴, 𝑝Γ,
and 𝑝𝐿𝑁 are compared with the empirical S–K relations at
all probes in the simulations of cases 1, 3 and 6.

The corresponding results are shown in Fig. 9(a–c). Al-
though the spatial information is lacking in the S–K plot, it
can still be recognized by tracing the evolution of 𝜆40: the
kurtosis 𝜆40 starts from approximately 0 at 𝑥 = −2.7 m,
achieves its global maximum at 𝑥 = 0.8 m and a secondary
maximum at 𝑥 = 3.5 m, and decreases to the steady level in
the end of the flume at 𝑥 = 40𝐿𝑝,2. To distinguish the short-
scale and the long-scale evolution, the simulated empirical
S–K curves in the long scale (𝑥 > 5𝐿𝑝,2) are plotted with
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Figure 7: Comparison of the spatial evolution of simulated empirical 𝜆3 (upper panels) and 𝜆40 (lower panels) with that of the
theoretical 𝜆3,𝑁𝐵 and 𝜆40,𝑁𝐵 in cases 1, 3, and 6. The left panels correspond to short-scale evolution and the right panels to

long-scale evolution.

dashed lines, with the characteristic locations marked in the
figure. Comparing panels (a–c) corresponding to cases 1, 3
and 6 respectively, it is noticed that, although the levels of in-
cident wave nonlinearity and maximum values of 𝜆3 and 𝜆40vary among the three cases, the evolution of 𝜆40(𝜆3) follows
the same trend in all three cases. In Fig. 9(c), the empirical
S–K relationship extracted from the experimental results of
Trulsen et al. (2020) before and over the flat shallower re-
gion (i.e., without the de-shoaling area) is superimposed as
an additional verification of the S–K relationships. It is seen
that the empirical S–K relationship is close to the predictions
of 𝑝𝐻 and 𝑝𝐿𝑁 (thus well captured by the second-order the-
oretical prediction by Mori and Kobayashi (1998)).

The excess kurtosis 𝜆40(𝜆3) first increases then decreases
in the short scale (𝑥 < 5𝐿𝑝,2), because of the development
and attenuation of the NED effect over the shallower region.
The increase and decrease trends of 𝜆40(𝜆3) are slightly dif-
ferent, i.e., different values of 𝜆40 can be achieved for the
same 𝜆3. This feature is more evident for larger 𝜆3. The evo-
lution 𝜆40(𝜆3) is well described by the S–K relations of the
exponential Gamma distribution 𝑝𝐻 and the lognormal dis-
tribution 𝑝𝐿𝑁 . The S–K relations based on the Gamma dis-
tribution 𝑝Γ and the second-order distribution 𝑝𝑇𝐴 slightly
underestimate 𝜆40. In general, all theoretical S–K relations
provide reasonably good estimation of 𝜆40(𝜆3). The good
agreement between the empirical S–K relation and the the-

oretical predictions of 𝑝𝐿𝑁 in the short scale (𝑥 < 5𝐿𝑝,2)
indicates that 𝜆3 and 𝜆40 follow a polynomial relationship.
The 𝑝𝐿𝑁 model introduced in this work shows some merits:
On the one hand, the S–K relationship of 𝑝𝐿𝑁 coincides with
the prediction of second-order wave theory, and it could be
used for waves of higher-order nonlinearity (for example, in
our case 6, the waves are of third-order nonlinearity on aver-
age, according to the Le Méhauté’s diagram). On the other
hand, it is capable of predicting the non-equilibrium statis-
tics in both short and long scales (as illustrated in sec. 4),
without the limitation of anomalous negative PDF values as
in the G–C type models nor the concerns on the unrealis-
tic troughs in second-order Stokes-type models (Tayfun and
Alkhalidi, 2020).

We noticed in Figs. 9(a–c) that none of the four mod-
els can explain the secondary local peaks of kurtosis corre-
sponding to the point (0.36,0.16) in panel (b) and (0.57,0.26)
in panel (c). These secondary peaks appear around 𝑥 =
5.3 m, as the NED decays in the short scale. Moreover, as
waves propagate in the longer scale (𝑥 > 5𝐿𝑝,2, marked with
dotted black lines), the empirical skewness 𝜆3 continues to
decrease, and the corresponding kurtosis 𝜆40 does not reduce
back to 0, but to a negative value. Again, the S–K relation-
ship in the long scale cannot be predicted by any of the the-
oretical PDF models considered here. The secondary local
peak of empirical 𝜆40 in the short scale and the negative val-
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Figure 8: Evolution of 𝜆3 (upper panels) and 𝜆40 (lower panels) computed using the integration of three theoretical models of
FSE distribution. The left panels correspond to short-scale evolution and the right panels to long-scale evolution. The results of
different models are marked with different line styles, and the line colors indicate different test cases (black for case 1, red for

case 3 and blue for case 6).
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Figure 9: Evolution of excess kurtosis 𝜆40 as a function of skewness 𝜆3, predicted by four theoretical models in (a) case 1, (b)
case 3 and (c) case 6. The simulated empirical S–K relationships are marked with different line styles for the short scale (black

solid line) and the long scale (black dash line) sea-state evolution. Theoretical model predictions are marked with different
colors, as indicated in the legend box of panel (a).

ues achieved in the long scale, indicate that re-equilibration
process of an out-of-equilibrium sea-state reflects a complex
physics. To better describe the different trends of S–K rela-
tion during the two-scale sea-state equilibration process, a
four- (or even more) parameter model would be needed.

A good S–K relation indicates that a theoretical PDF
model describes well the underlying physics, and could be
applied for several practical purposes. Being able to express
𝜆40 as a function of 𝜆3 offers the possibility to reduce the di-
mension of inputs, and to simplify the formulations of other
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Figure 10: Variations of maximum crest-to-trough wave heights 𝐻̄𝑚𝑎𝑥 (upper panels a and b) and maximum wave crest 𝜂̄𝑐,𝑚𝑎𝑥
(lower panels c and d) as functions of 𝜆3 (left panels a and c) and as functions of 𝜆40 (right panels b and d) for the cases 1

(black symbols), 3 (red symbols) and 6 (blue symbols). In all panels, hollow circles denote the results in the short scale
(𝑥 ∈ [0, 5]𝐿𝑝,2), and crosses in the long scale (𝑥 ∈ [5, 40]𝐿𝑝,2).

statistical models. For example, as the crest height or wave
height distributions of G–C type require both 𝜆3 and 𝜆40 as
inputs, they could be simplified as a function of 𝜆3 only. A
suitable S–K relation could also be used for the estimation of
kurtosis from in-situ measurements. Because the evaluation
of kurtosis is more sensitive to the sampling frequency than
skewness, the results could be different if the highest waves
were not properly captured by the measuring device. Finally,
in a freak wave warning system, which often depends on the
computation of skewness and kurtosis, a proper S–K rela-
tionship of a simple form could reduce the computation ef-
fort considerably.
5.3. Relationship between the maximum wave

statistics and statistical moments
In the literature, there is some indication that both the

maximum wave height 𝐻̄𝑚𝑎𝑥 and the maximum crest height
𝜂̄𝑐,𝑚𝑎𝑥 (i.e. the maximum FSE 𝜂̄𝑚𝑎𝑥 of a wave identified with
the zero-up-crossing method) are positively correlated with
𝜆3 and 𝜆40 in the short scale after strong depth variations
(see e.g. Kashima and Mori, 2019). Here, we extend the dis-
cussion of the relationship between the statistical maximums
and high-order moments to the long-scale wave evolution.

In Fig. 10, both 𝐻̄𝑚𝑎𝑥 and 𝜂̄𝑐,𝑚𝑎𝑥 are shown as functions
of 𝜆3 and 𝜆40. Again, cases 1, 3, and 6 are analyzed to il-

lustrate the effects related to incident wave nonlinearity. In
order to include some spatial information in this figure, the
maximum waves recorded in the short scale (𝑥 < 5𝐿𝑝,2)
are marked with hollow circles, and those in the long scale
(𝑥 > 5𝐿𝑝,2) with crosses. The criteria for freak waves are
represented by the horizontal dash lines, indicating 𝐻̄𝑚𝑎𝑥 =
2𝐻𝑠∕𝜎 = 8 or 𝜂̄𝑚𝑎𝑥 = 1.25𝐻𝑠∕𝜎 = 5 depending on the
case.

From Figs. 10(a–b), the maximum wave height shows
different features in short and long scales. The maximum
wave heights 𝐻̄𝑚𝑎𝑥 taking place in the short scale are mostly
above the freak wave criterion, whereas the majority of the
𝐻̄𝑚𝑎𝑥 values recorded in the long scale are below the crite-
rion. This observation implies that the choice of the length
5𝐿𝑝,2 is fair in the sense that it separates two regions with
different wave dynamics and freak wave risks. The maxi-
mum wave height 𝐻̄𝑚𝑎𝑥 is correlated with 𝜆3 and 𝜆40 in a
nearly linear way, especially for 𝐻̄𝑚𝑎𝑥 below the freak wave
criterion. The incident wave nonlinearity leads to a shift in
the relationship between 𝐻̄𝑚𝑎𝑥 and 𝜆3.

From Figs. 10(c–d), it is seen that the maximum wave
crest height 𝜂̄𝑐,𝑚𝑎𝑥 exceeds the freak wave criterion in both
short and long scales. This is related to the asymmetric wave
profile due to finite water depth effects, wave crests being
higher in magnitude than wave troughs. Notice that the mag-
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nitudes of some maximum crest heights in Figs. 10(c) and
(d) are close to their counterparts in Figs. 10(a) and (b). It
means that the troughs of these waves are so shallow that
the contribution of wave troughs to the wave height becomes
small. 𝜂̄𝑐,𝑚𝑎𝑥 shows a nearly linear correlation with 𝜆3, how-
ever such a dependence is not clear for 𝜆40.

6. Conclusion
Recent works (e.g. Trulsen et al., 2012; Viotti and Dias,

2014; Trulsen et al., 2020) have shown that the freak wave
occurrence probability could be enhanced due to the NED
effects when a (quasi-) steady sea-state passes over a steep
shoal or seabed step, and then propagates in a new, shallower
water depth. According to ZBM2022, in the new depth envi-
ronment, the NED first develops to reach its maximum level
within one wavelength (i.e., 𝑥 < 𝐿𝑝,2) and then attenuates
rapidly in the near field after the depth change (the so-called
"short scale" 𝑥 ∈ [0, 5]𝐿𝑝,2), the NED continuously affects
the sea-state over a long distance (the so-called "long scale"
𝑥 ∈ [5, 40]𝐿𝑝,2), and finally, the sea-state adapts to the re-
duced water depth and reaches a corresponding new equilib-
rium state. In ZBM2022, the characteristics of the two-scale
equilibration process have been discussed based on spectral
analyses. The present work continues the investigation of
this equilibration process based on the same dataset as re-
ported in ZBM2022, focusing on the non-stationary statis-
tics caused by the NED and aiming at providing recommen-
dations for coastal engineering applications. In particular,
the validity and accuracy of several theoretical or semi-empirical
distributions of FSE (7 models) and crest-to-trough wave
height (5 models) have been assessed regarding the repre-
sentation of non-equilibrium statistics.

The main conclusions from this assessment of theoreti-
cal distribution models are summarized below:

• for FSE: in the short scale, the exponential Gamma
distribution 𝑝𝐻 (𝜂̄) of Herrman et al. (1997) and Kobayashi
et al. (1998) and the lognormal distribution 𝑝𝐿𝑁 (𝜂̄)
introduced in the present work both predict the evo-
lution of FSE distribution very well, even when non-
Gaussianity is prominent. The lognormal distribution
appears as a balanced choice for practical use, as it
shows good performance and is convenient to build.
In the long scale, the G–C type model of Bitner (1980)
𝑝𝐵(𝜂̄) has an overall better performance.

• for the wave height: the model of Alkhalidi and Tay-
fun (2013)𝑃𝐴𝑇 (𝐻̄) provides reasonable prediction de-
spite some underestimation for high waves, in both
short and long scales. It has been shown that the LoW-
iSh model 𝑃𝑊 (𝐻̄) (Wu et al., 2016) would overesti-
mate the probability of high waves when the sea-state
is characterized by weak nonlinearity.

The high-order statistical moments, skewness and kur-
tosis and their correlations with maximums of wave height
and FSE, have been investigated as well. The results show
that the theoretical computation of 𝜆3 and 𝜆40 based on wave

spectrum (derived theoretically by assuming uniform wa-
ter depth) is not capable of describing the non-equilibrium
statistics in the short scale. This is especially true for the ex-
cess kurtosis, usually considered as a proxy for freak wave
probability. The theoretical prediction overestimates the sta-
bilizing effects due to nonlinear wave-wave interaction for
shallow water depth, this is because the contribution of the
dynamic component exponentially decreases toward−∞when
𝑘ℎ < 1.363. In the long scale, the theoretical excess kurto-
sis does not capture the slightly negative values observed in
the simulations. It should be noticed that, for a freak wave
warning system based on 𝜆3 and 𝜆40 analytically determined
from the wave spectrum, the freak wave probability could
be considerably underestimated for rapidly changing envi-
ronments due to NED effects. Particular attention should be
paid to the areas with strong depth transitions, like trenches,
submerged mounds or bars, coral reefs, etc. The analyses of
the FSE and wave height maximums and statistical moments
show that the maximum wave height correlates with 𝜆3 and
𝜆40 in a nearly linear manner, yet the correlation between
maximum FSE and 𝜆40 is not so clear.

The S–K relationships (expressing excess kurtosis 𝜆40as a function of skewness 𝜆3) have been estimated by inte-
grating four theoretical FSE distribution models and com-
pared with the simulation results. In the short scale, the
rapid and large variations of 𝜆40(𝜆3) are closely described
by the S–K relationships of the exponential Gamma distri-
bution 𝑝𝐻 and the lognormal distribution 𝑝𝐿𝑁 for the three
cases considered with increasing wave nonlinearity (see fig-
ure 9). In contrast, the S–K relationships of the Gamma-
type 𝑝Γ and the second-order 𝑝𝑇𝐴 distributions slightly un-
derestimate 𝜆40. The lognormal model 𝑝𝐿𝑁 characterizes
the S–K relation approximately as a simple quadratic expres-
sion(see eq. (A.28)), which is also in line with the prediction
of second-order model of Kobayashi et al. (1998). Such a
feature of 𝑝𝐿𝑁 is of great potential in practical applications,
like reducing the model dimension of wave height distribu-
tions or accelerating the computation in a freak wave warn-
ing system.

For future works, we aim to enlarge the database of non-
equilibrium waves by performing more experiments and nu-
merical simulations with different wave and bottom config-
urations in 2DH setup, and by collecting in-situ measure-
ments under rapid changes of environment. Other models
of distribution of wave height, e.g. the recent second-order
model put forward by Mendes et al. (2022), will be consid-
ered and compared with data. Other statistical properties of
the non-equilibrium sea-states deserve to be investigated as
well, for example, the distributions of wave crest, wave en-
velope, wave phase, and maximum wave height.
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Appendix A Distributions of FSE
A.1 Gaussian distribution (Longuet-Higgins,

1952)
Assuming the sea-state is a linear superposition of an in-

finite number of sinusoidal waves with random amplitudes
and phases, the normalized FSE 𝜂̄ is governed by the normal
(Gaussian) distribution

𝑝𝐺(𝜂̄) =
1

√

2𝜋
exp

(

−
𝜂̄2

2

)

(A.1)

A.2 Gram-Charlier type distribution (Bitner,
1980)

Assuming the waves are weakly nonlinear, stationary,
ergodic, and a quasi-normal random process, the distribu-
tion of 𝜂̄ is expressed in Edgeworth’s form of G–C series
(Longuet-Higgins, 1963). Such a model consists of two parts:
the linear part (Gaussian distribution) and the nonlinear cor-
rection (with skewness 𝜆3 and excess kurtosis 𝜆40 involved
in the expression). It has been applied to describe the distri-
butions of FSE and other variables in shallow water (Bitner,
1980; Ochi and Wang, 1984). The formulation of the FSE
distribution given in Bitner (1980) is

𝑝𝐵(𝜂̄) = 𝑝𝐺

[

1 +
𝜆3
6
𝐻3(𝜂̄) +

𝜆40
24
𝐻4(𝜂̄)

]

, (A.2)

where 𝐻3 and 𝐻4 denote 3-rd and 4-th order Hermite poly-
nomials, defined as

𝐻3(𝜂̄) = 𝜂̄3 − 3𝜂̄, 𝐻4(𝜂̄) = 𝜂̄4 − 6𝜂̄2 + 3. (A.3)
In a Gaussian sea-state, 𝜆3 = 𝜆40 = 0, thus eq. (A.2) reduces
to the Gaussian distribution (A.1). The major disadvantage
of a G–C type model is that, in high sea-states, it predicts an
EDF of wave height/crest height with local negative gradi-
ents, indicating the corresponding probability density to take
negative values, which is evidently non-physical.

A.3 Herrman distribution (Herrman et al., 1997)
The exponential Gamma distribution introduced by Her-

rman et al. (1997); Kobayashi et al. (1998) has shown good
performance in describing the distribution of FSE over a
wide range of constant water depth. Based on the assump-
tion of stationarity and ergodicity, it is formulated as (Her-
rman et al., 1997)

𝑝𝐻 (𝜂̄) =
[

Γ(𝑎0)
]−1√𝜓1(𝑎0)𝑒−𝑎0𝑦 exp(−𝑒−𝑦), (A.4)

where the formulation of 𝑦(𝑎0) is
𝑦 =

√

𝜓1(𝑎0)𝜂̄ − 𝜓(𝑎0), (A.5)
and 𝑎0 is the shape parameter, determined from 𝜆3 by solving
the nonlinear equation

𝜆3 = −𝜓2(𝑎0)
[

𝜓1(𝑎0)
]−1.5 . (A.6)

In eqs. (A.4–A.6), Γ,𝜓 ,𝜓1, and𝜓2 denote the gamma, digamma,
trigamma, and tetragamma functions, respectively. Given 𝑎0determined from eq. (A.6), the excess kurtosis can be com-
puted as

𝜆40 = −𝜓3(𝑎0)
[

𝜓1(𝑎0)
]−2 , (A.7)

where 𝜓3 denotes the pentagamma function. The shape pa-
rameter 𝑎0 decreases from +∞ to 0 for 𝜆3 varying from 0
to 2. For 𝜆3 = 0 and 𝑎0 → +∞, eq. (A.4) reduces to the
Gaussian distribution, and for 𝜆3 = 2 and 𝑎0 → 0, eq. (A.4)
becomes the exponential distribution.
A.4 Socquet-Juglard distribution

(Socquet-Juglard et al., 2005)
Following the approach of Longuet-Higgins (1963) and

assuming waves are narrow-banded, Tayfun (1980) derived a
second-order correction to the Gaussian distribution of FSE.
Socquet-Juglard et al. (2005) used an approximation of the
second-order model of Tayfun (1980) to investigate the evo-
lution of wave statistics during spectral changes (which is
also a non-stationary scenario), showing good agreement with
the simulated data for at least 𝜂̄ < 4. For this reason, the
second-order model of Socquet-Juglard et al. (2005) is in-
cluded for comparison, although the model assumes a flat
bottom. The formulation of Socquet-Juglard et al. (2005) is

𝑝𝑆𝐽 (𝜂̄) =
1 − 7𝜖2∕8

√

2𝜋
(

1 + 3𝐺 + 2𝐺2
)

exp
(

− 𝐺
2

2𝜖2

)

, (A.8)

where 𝐺 =
√

1 + 2𝜖𝜂̄ − 1. Note that, theoretically, 𝜖 = 𝑘𝑝𝜎is computed from the second-order sea-state. In practice, it
is computed from the simulated sea-state which is fully non-
linear. This model is valid for 𝜂̄ > −3∕(8𝜖), otherwise the
formulation given in eq. (A.8) diverges. As 𝜖 → 0, eq. (A.8)
reduces to the Gaussian distribution.
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A.5 Tayfun distribution (Tayfun and Alkhalidi,
2020)

When applied to shallow water waves of moderate to
high nonlinearity, second-order Stokes-type models are sys-
tematically subject to anomalous troughs with spurious (neg-
ative) crests instead of usual troughs. This non-realistic fea-
ture in second-order models could result in serious errors
while modelling wave statistics. Recently, Tayfun and Alkha-
lidi (2020) put forward a modified second-order model valid
for narrow-banded waves in finite water depth, which is free
from anomalies for shallow water waves. We adopt the sim-
plified form of this second-order model given in Tayfun and
Alkhalidi (2020), as it is of more practical value

𝑝𝑇𝐴(𝜂̄) =

⎧

⎪

⎨

⎪

⎩

𝑐0𝑝0(𝑧)∕(1 + 𝜖′𝑧); 𝑧 > 0,
𝑐0𝑝0(𝑧)∕ exp (𝜖′𝑧); −2∕𝜖′ < 𝑧 ≤ 0, (A.9)
0; 𝑧 ≤ −2∕𝜖′,

with the following relation between 𝑧 and 𝜂̄

𝜂̄ =

{
(

𝑧 + 𝜖′𝑧2∕2 − 𝜂′𝑚
)

∕𝜎′; 𝑧 > 0, (A.10)
[

𝑧 exp
(

𝜖′𝑧2∕2
)

− 𝜂′𝑚
]

∕𝜎′; −2∕𝜖′ < 𝑧 ≤ 0.

This model is restricted to 𝜂̄ > −[2 exp (−1)∕𝜖′) + 𝜂′𝑚]∕𝜎
′.

The coefficient 𝑐0 = 𝜎′∕𝑃0(2∕𝜖′). In this formulation, 𝑝0denotes the standard normal PDF with zero mean and 𝜎 = 1,
and 𝑃0 is the corresponding cumulative distribution.

The input parameters 𝜂′𝑚, 𝜎′, 𝜖′ = 𝑘𝑝𝜎′, denoting the
mean, standard deviation and the steepness respectively, are
computed from the second-order FSE. To skip the numerical
calculation of the second-order model, Tayfun and Alkha-
lidi (2020) gave the corresponding regression formulations
of 𝜂′𝑚, 𝜎′, 𝜖′ as functions of 𝜆3 (valid for 𝜆3 ∈ [0, 1.5]) re-
ported below, including in addition the expression of 𝜆40

𝜖′ = 0.0259𝜆33 + 0.0174𝜆23 + 0.3377𝜆3, (A.11)
𝜂′𝑚 = 0.0101𝜆33 − 0.0012𝜆23 + 0.1687𝜆3, (A.12)
𝜎′ = 0.0104𝜆33 + 0.0396𝜆23 + 0.0025𝜆3 + 1, (A.13)
𝜆′40 = −0.0259𝜆33 + 1.4696𝜆23 + 0.0075𝜆3. (A.14)

A.6 Gamma distribution (Bolles et al., 2019)
The Gamma distribution was recently proposed by Bolles

et al. (2019) to model the distribution of FSE in the area fol-
lowing an abrupt depth change (with a vertical step), and
compared favourably with irregular wave flume experiments.
For the branch of positive values of FSE, the Gamma distri-
bution exhibits an exponential decay which is much slower
than Gaussian, thus representing an increased occurrence of
extreme events in the area following the seabed step. The
general 3-parameter form of the Gamma distribution is

𝑝Γ(𝜂) =

⎧

⎪

⎨

⎪

⎩

0 ; 𝜂 ≤ 𝜖,
1

𝜆𝛼Γ(𝛼)
(𝜂 − 𝜖)𝛼−1 e− 𝜂−𝜖

𝜆 ; 𝜂 > 𝜖, (A.15)

where −∞ < 𝜖 < +∞ is the location parameter, 𝜆 > 0 is
the scale parameter and 𝛼 > 0 is the shape parameter. This

distribution has the following first four moments
⟨𝜂⟩ = 𝜖 + 𝜆𝛼, (A.16)
𝜎(𝜂) = 𝜆

√

𝛼, (A.17)
𝜆3(𝜂) = 2∕

√

𝛼, (A.18)
𝜆4(𝜂) = 3 + 6∕𝛼. (A.19)

Using eqs. (A.16–A.17), the Gamma PDF for the nor-
malized FSE with zero mean and unit variance can be writ-
ten as

𝑝Γ(𝜂̄) =

⎧

⎪

⎨

⎪

⎩

0 ; 𝜂̄ ≤ −
√

𝛼,
𝛼𝛼∕2e−𝛼
Γ(𝛼)

(

𝜂̄ +
√

𝛼
)𝛼−1 e−

√

𝛼𝜂̄; 𝜂̄ > −
√

𝛼, (A.20)

which is a function of the shape parameter only, directly re-
lated to the skewness after eq. (A.18): 𝛼 = 4∕𝜆23(𝜂̄). Finally,
eq. (A.19) provides a simple and explicit S–K relationship

𝜆40(𝜂̄) =
6
𝛼
= 3

2
𝜆23(𝜂̄). (A.21)

A.7 Lognormal distribution
In the present study, we propose another option for mod-

elling the FSE distribution, using a fitted lognormal func-
tion. It is formulated as

𝑝𝐿𝑁 (𝜂̄) =

⎧

⎪

⎨

⎪

⎩

0 ; 𝜂̄ < 𝑎𝑝,

1
(

𝜂̄ − 𝑎𝑝
)

𝜏
√

2𝜋
𝑒−

[ln(𝜂̄−𝑎𝑝)−𝑎𝑠]2
2𝜏2 ; 𝜂̄ ≥ 𝑎𝑝, (A.22)

where the location 𝑎𝑝, scale 𝑎𝑠, and shape 𝜏 parameters are
required as input. They are determined from the following
equations

⟨𝜂̄⟩ = 0 = 𝑎𝑝 + 𝑞
1
2 𝑒𝑎𝑠 , (A.23)

𝜎(𝜂̄) = 1 = 𝑒𝑎𝑠
√

𝑞2 − 𝑞, (A.24)
𝜆3(𝜂̄) = (𝑞 + 2)

√

𝑞 − 1, (A.25)
where 𝑞 ≡ 𝑒(𝜏2). For the scaled FSE 𝜂̄, the lognormal model
requires 𝜆3(𝜂̄) as the only input. The excess kurtosis 𝜆40(𝜂̄)is given by

𝜆40(𝜂̄) = (𝑞 − 1)
(

𝑞3 + 3𝑞2 + 6𝑞 + 6
)

, (A.26)
where 𝑞 can be obtained from 𝜆3(𝜂̄) by inverting eq. (A.25):

𝑞(𝜆3) =
[

1 +
𝜆3
2

(

𝜆3 +
√

𝜆23 + 4
)]1∕3

+
[

1 +
𝜆3
2

(

𝜆3 −
√

𝜆23 + 4
)]1∕3

− 1

(A.27)

The S-K relation 𝜆40(𝜆3) can not be obtained in a simple
closed form from (A.26) and (A.27), but over the range 𝜆3(𝜂̄) ∈
[0, 1.5], it can be shown that a close approximation is

𝜆40(𝜂̄) ≈ 1.85 𝜆23(𝜂̄). (A.28)
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This S-K relation is also quadratic in 𝜆3(𝜂̄) as for the Gamma
distribution eq. (A.21), but with a higher multiplying factor.

To the limit of our knowledge, the lognormal distribution
has never been applied to describe the FSE distribution.

Appendix B Distributions of wave height
B.1 Boccotti distribution (Boccotti, 2000)

The applicability of Rayleigh distribution for wave heights
critically relies on the narrow-band assumption. For finite-
banded linear waves, the Q-D model of Boccotti (2000) is
adopted as the Gaussian expectation of wave height statis-
tics

𝑃𝐵(𝑧 > 𝐻̄) = 𝑐0 exp
(

−𝑐1𝐻̄2), (B.29)
where the coefficients 𝑐1 and 𝑐2 are

𝑐0 =
1 + 𝑏

√

2𝑏 (1 + 𝑎)
, 𝑐1 =

𝐻̄2

4 (1 + 𝑎)
(B.30)

with

𝑎 =
|

|

|

|

∫

∞

0
𝑆(𝑓 ) cos

(

2𝜋𝑓𝜏∗
) d𝑓 ||

|

|

∕𝑚0, (B.31)

𝑏 =
|

|

|

|

∫

∞

0
𝑓 2𝑆(𝑓 ) cos

(

2𝜋𝑓𝜏∗
) d𝑓 ||

|

|

∕𝑚2, (B.32)

with 𝜏∗ denoting the time-lag of the global minimum of the
auto-correlation function 𝜌(𝜏) = ⟨𝜂(𝑡)𝜂(𝑡 + 𝜏)⟩. This model
describes the distribution of large wave heights (𝐻̄ ≫ 1).
B.2 Forristall distribution (Forristall, 1978)

Forristall (1978) proposed an empirical model to fit the
field measurements of hurricane sea-states in the Gulf of
Mexico. This model is often adopted for deep or transitional
water depth. It is formulated as

𝑃𝐹 (𝑧 > 𝐻̄) = exp
(

−𝐻̄
2.126

8.42

)

, (B.33)

B.3 Alkhalidi distribution (Alkhalidi and Tayfun,
2013)

The G–C type wave height distribution (also known as
modified Edgeworth–Rayleigh (MER) distribution) involves
kurtosis to describe the wave statistics due to third-order
nonlinear interactions (Mori and Janssen, 2006). A more
general expression of G–C type model (assuming the wave
height is twice the envelope height) is given in Tayfun and
Fedele (2007) and reads

𝑃𝑇𝐹 (𝑧 > 𝐻̄) = exp
(

−𝐻̄
2

8

)

[

1 + Λ
1024

𝐻̄2 (𝐻̄2 − 16
)

]

.

(B.34)
When replacing Λ by Λ𝑎𝑝𝑝, eq. (B.34) returns to the MER
distribution given in Mori and Janssen (2006), which as-
sumes the waves to be narrow-banded.

Combining the G–C type model in eq. (B.34) and the
linear Q-D model in eq. (B.29), Alkhalidi and Tayfun (2013)
put forward a generalized Boccotti distribution to take the
effects of third-order nonlinearity and finite bandwidth into
account. It is formulated as

𝑃𝐴𝑇 (𝑧 > 𝐻̄) = 𝑐0 exp (−𝑐1𝐻̄2)
[

1 + Λ
16
𝑐1𝐻̄

2 (𝑐1𝐻̄
2 − 2

)

]

.

(B.35)
This model describes the distribution of large wave heights
(𝐻̄ ≫ 1) in relatively deep water, as in the linear Q-D model
(Boccotti, 2000). It should be mentioned that we adopt Λ𝑎𝑝𝑝in practice as it does not require the information of 𝜂 a priori
and thus is a model for forecast.
B.4 Glukhovskiy-type distributions

Glukhovskiy (1966) put forward a shallow-water wave
height distribution with a Weibull shape. This empirical
model is capable of describing wave breaking effects. This
model has two modified versions provided by Van Vledder
(1991) and Klopman (1996). The formulation of modified
Glukhovskiy distribution is

𝑃𝐺(𝑧 > 𝐻̄) = exp
[

−𝐴
(

𝜎𝐻̄∕𝐻𝑚
)𝜅], (B.36)

where 𝜎 denotes the standard deviation of 𝜂.
In the version of Van Vledder (1991), the coefficients 𝜅

and the mean wave height𝐻𝑚 are evaluated iteratively based
on 𝐻𝑟𝑚𝑠, until the following relationships are fulfilled

𝜅 = 2
1 −𝐻𝑚∕ℎ

, (B.37)

𝐻𝑚 = 𝐻𝑟𝑚𝑠Γ
( 1
𝜅
+ 1

) [

Γ
( 2
𝜅
+ 1

)]−1∕2
. (B.38)

Then, with 𝜅 determined, the coefficient 𝐴 is computed as
follows

𝐴 =
[

Γ
( 2
𝜅
+ 1

)]𝜅∕2
. (B.39)

Klopman (1996) proposed another version of Glukhovskiy
distribution, circumventing the iterative procedure by directly
taking 𝐻𝑚 = 𝐻𝑟𝑚𝑠, and computing 𝜅 as

𝜅 = 2
1 − 0.7𝐻𝑟𝑚𝑠∕ℎ

. (B.40)

In both versions,𝐻𝑟𝑚𝑠 ≈ 𝐻𝑠∕
√

2 is assumed, indicating that
a narrow-banded Gaussian process is taken for granted.
B.5 LoWiSh distribution (Wu et al., 2016)

In the project "Limits on Waves in Shallow Water (LoW-
iSh)", (Katsardi et al., 2013; Wu et al., 2016), an empirical
two-part Weibull-generalized Pareto (WGP) distribution for
shallow water wave heights is introduced. In analogy with
the composite Weibull distribution (CWD) by Battjes and
Groenendijk (2000), WGP involves a Weibull distribution
for describing the lower wave heights and a Pareto distribu-
tion for the higher wave heights. Compared to CWD, WGP
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shows two improvements: (1) the corresponding PDF is con-
tinuous; (2) it contains an upper bound for wave height.

The WGP model requires the local parameters including
𝐻𝑠, 𝑘𝑝 and ℎ as input, and reads

𝑃𝑊 (𝑧 > 𝐻̄) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp

[

−𝜇0

(

𝐻̄
4𝜌

)𝐾
]

, 0 ≤ 𝐻̄ ≤ 4𝜌, (B.41)

exp
(

−𝜇0
)

[

1 + 𝜉
(

𝐻̄ − 4𝜌
)]

1
𝜉

, 4𝜌 < 𝐻̄ < 𝐻̄𝑚𝑎𝑥,

where𝜇0,𝐾 are the scale and shape parameters of the Weibull
distribution respectively, 4𝜌 is the transition wave height of
two formulations, 𝜉 the shape parameter of the Pareto dis-
tribution, and 𝐻̄𝑚𝑎𝑥 the normalized maximum wave height
according to the Miche limiting criterion. They are defined
as

𝐻̄𝑚𝑎𝑥 = 2𝛽𝜋
tanh

(

𝑘𝑝ℎ
)

𝑘𝑝𝜎
, 𝜇0 =

1
𝛼𝐾

, (B.42)

𝐾 = 2
1 − 𝜆(𝐻𝑠∕ℎ)1.7

, 𝜉 =
4𝜌𝛼

4𝜌 − 𝐻̄𝑚𝑎𝑥
. (B.43)

In Wu et al. (2016), the recommended values are 𝛼 = 0.22,
𝛽 = 0.15, 𝜆 = 1 and 𝜌 = 1, and the transition wave height for
two models is 𝜌𝐻𝑠 ≡ 4𝜌𝜎. We notice a misprint in eq. (21)
of Karmpadakis et al. (2020) for the expression of the Pareto
distribution.
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