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Abstract. Environmental modelling is complex, and mod-
els often require the calibration of several parameters that
are not able to be directly evaluated from a physical quan-
tity or field measurement. Multi-objective calibration has
many advantages such as adding constraints in a poorly con-
strained problem or finding a compromise between differ-
ent objectives by defining a set of optimal parameters. The
caRamel optimizer has been developed to meet the require-
ment for an automatic calibration procedure that delivers not
just one but a family of parameter sets that are optimal with
regard to a multi-objective target. The idea behind caRamel
is to rely on stochastic rules while also allowing more “lo-
cal” mechanisms, such as the extrapolation along vectors in
the parameter space. The caRamel algorithm is a hybrid of
the multi-objective evolutionary annealing simplex (MEAS)
method and the non-dominated sorting genetic algorithm II
(ε-NSGA-II). It was initially developed for calibrating hy-
drological models but can be used for any environmental
model. The caRamel algorithm is well adapted to complex
modelling. The comparison with other optimizers in hydro-
logical case studies (i.e. NSGA-II and MEAS) confirms the
quality of the algorithm. An R package, caRamel, has been
designed to easily implement this multi-objective algorithm
optimizer in the R environment.

1 Introduction

Environmental modelling is complex, and models often re-
quire the calibration of many parameters that cannot be di-
rectly estimated from a physical quantity or a field measure-
ment. Moreover, as models’ outputs exhibit errors whose sta-

tistical structure may be difficult to characterize precisely,
it is frequently necessary to use various objectives to eval-
uate the modelling performance. In other words, it is often
difficult to find a rigorous likelihood function or sufficient
statistics to be maximized/minimized (Fisher, 1922); for ex-
ample, it is well known that errors in a simulated discharge
time series are not normally distributed, and do not have con-
stant variance or autocorrelation (Sorooshian and Dracup,
1980). In addition, Efstratiadis and Koutsoyiannis (2010) list
other advantages of multi-objective calibration such as en-
suring parsimony between the number of objectives and the
parameters to optimize, fitting distributed responses of mod-
els on multiple measurements, recognizing the uncertainties
and structural errors related to the model configuration and
the parameter estimation procedure, and handling objectives
that have contradictory performance.

Multi-objective calibration allows for a compromise be-
tween these different objectives to be found by defining a
set of optimal parameters. Practical experience shows that
single-objective calibrations are efficient for highlighting a
certain property of a system, but this might lead to increas-
ing errors in some other characteristics (Mostafaie et al.,
2018). Evolutionary algorithms have been widely used to ex-
plore the Pareto-optimal front in multi-objective optimiza-
tion problems that are too complex to be solved by descent
methods with classical aggregation approaches. Evolution-
ary algorithms are advantageous not only because there are
few alternatives for searching substantially large spaces for
multiple Pareto-optimal solutions but also due to their inher-
ent parallelism and capability to exploit similarities of solu-
tions by recombination that enables them to approximate the
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Pareto-optimal front in a single optimization run (Zitzler et
al., 2000).

Many studies have used the multi-objective approach in
environmental modelling (Oraei Zare et al., 2012; Ercan
and Goodall, 2016) or in land use models (Gong et al.,
2015; Newland et al., 2018). In hydrology, Madsen (2003)
implemented automatic multi-objective calibration of the
MIKE SHE model (Refsgaard and Storm , 1995) on the
Danish Karup catchment (440 km2) using the shuffled com-
plex evolution (SCE) algorithm (Duan et al., 1992). Yang
et al. (2014) ran a multi-objective optimization of the MO-
BIDIC (Campo et al., 2006) distributed hydrologic model
on the Davidson catchment (North Carolina, 105 km2) us-
ing the non-dominated sorting genetic algorithm II (NSGA-
II, Deb et al., 2002). More recently Smith et al. (2019) led
a multi-objective ensemble approach to hydrological mod-
elling in the UK over 303 catchments for historic drought
reconstruction with the GR4J conceptual model (Coron et
al., 2017) using Latin hypercube sampling (McKay et al.,
1979) and a Pareto-optimizing ranking approach accounting
for unacceptable trade-offs (Efstratiadis and Koutsoyiannis,
2010). Mostafaie et al. (2018) compared five different cali-
bration techniques on the GR4J lumped hydrological model
using in situ runoff and daily data from the Gravity Recov-
ery And Climate Experiment (GRACE, Tapley et al., 2004).
They came to the following conclusions: according to the
diversity-based metrics, the NSGA-II method is the best ap-
proach; according to the accuracy metric, multi-objective
particle swarm optimization (MPSO, Reddy and Nagesh Ku-
mar , 2007) is ranked first; and, considering the cardinality
measure, the performance of all algorithms is found to be the
same.

The caRamel optimizer has been developed to meet the
need for an automatic calibration procedure that delivers not
only one but a family of parameter sets that are optimal with
regard to a multi-objective target (Le Moine, 2009). Mad-
sen (2003) indicated that global population-evolution-based
algorithms are more effective than multi-start local search
procedures, which, in turn, perform better than purely lo-
cal search methods. However, most of the multi-objective
algorithms rely mainly on stochastic generation rules, with
few deterministic aspects, as is the case in the widely used
NSGA-II for instance. The idea behind caRamel is not just to
keep these stochastic “global” mechanisms (such as recom-
bination or multivariate sampling using the covariance) but
also to allow more “local” mechanisms, such as extrapolation
along vectors in the parameter space, that are associated with
an improvement in all objective functions (a “gradient-like”
qualitative approach extended to the set of objective func-
tions).

The caRamel algorithm was initially developed and used
for the calibration of hydrological models by studies such as
Rothfuss et al. (2012), Magand et al. (2014), Le Moine et al.
(2015), Monteil et al. (2015), which were all previous to the
R package release, or Rouhier et al. (2017), which utilized an

R version for the calibration of a hydrologic model over the
Loire Basin (35 707 km2). The interesting performance of the
caRamel algorithm in such studies prompted us to describe
the algorithm in detail in the present paper. Considering the
increasing use of R in hydrology (Slater et al., 2019), we de-
cided to build an R package, caRamel, for use in any model
in the R environment. The user simply has to define a vector-
valued function (at least two objectives) for the model to cal-
ibrate as well as upper and lower bounds for the calibrated
parameters.

This paper aims to describe the principles of the caRamel
algorithm via an analysis of its results when used for the
parametrization of hydrological models. Pieces of code are
provided in the Appendix. For an analytical example and
for three river case studies, a comparison with the two cali-
bration algorithms that inspired caRamel, the non-dominated
sorting genetic algorithm II (NSGA-II; Reed and Devireddy,
2004) and the multi-objective evolutionary annealing sim-
plex method (MEAS; Efstratiadis and Koutsoyiannis, 2008),
is also presented.

2 Context and notations

The intent of multi-objective calibration is to find sets of pa-
rameters that provide a compromise between several poten-
tially conflicting objectives; for instance, how to achieve a
good simulation of both flood and low-flow conditions in
a hydrological model. Multi-objective calibration is also a
means of adding some constraints to an under-constrained
problem when many parameters have to be quantified. This
can help to reduce the equifinality of parameter sets. Her and
Seong (2018) showed that the introduction of an adequate
number of objective functions could improve the quality of
a calibration without requiring additional observations. The
amount of equifinality and the overall output uncertainty de-
creased while the model performance was maintained as the
number of objective functions increased sequentially until
four objective functions.

To introduce our notation, Fig. 1 shows a simplified cali-
bration problem in which there is

– a model with nθ = 2 parameters to calibrate (θ1 and θ2).
Thus, the model structure is unequivocally represented
by the vector θ = (θ1,θ2) in a nθ = 2-dimensional
space, called “parameter space Eθ”.

– a vector y of ny observed values that should be simu-
lated by the model. For example, for daily times series
of 1 year at two gauging stations, ny = 2× 365= 730.
The simulation is represented by a vector ŷ(θ) in a
ny-dimensional space (that cannot be illustrated graph-
ically), called “observable space Ey”.

– a vector of nf objective values f (θ ,y). For the example
in Fig. 1, f = (f1,f2) in a space with nf dimensions,
called “objective space Ef ”.
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Figure 1. Notations to describe a model calibration, where θ is a
vector from the parameter space Eθ , y is a vector of observed values
in the observable space Ey and f (θ ,y) is an objective vector in the
objective space Ef .

We will use the following notations: vectors or matrices
are presented using bold italic and bold roman font respec-
tively (θ , y, f , 6. . .), vector elements and scalars are pre-
sented using roman font (θ1, θ2, λ, . . .), and spaces or ensem-
bles are presented using italic font (Eθ , F , A, . . .).

Figure 1 also illustrates the relevance of multi-objective
calibration with regard to two kinds of equifinality:

1. equifinality of a structure – the two points θ and θ ′ that
are quite distant in the parameter space Eθ become quite
near in the observable space Ey .

2. equifinality related to the objective – the vectors θ and
θ ′′ are equifinal regarding f1, and the additional objec-
tive f2 helps to discriminate them. The use of additional
objectives may then help to better constrain the calibra-
tion.

The purpose of a multi-objective algorithm is to approach
the Pareto front, F , of non-dominated solution in the objec-
tive space using an ensemble of points called the approxi-
mated Pareto front F̂ . We call “archive Â” the ensemble of
parameter sets from Eθ for which simulation outputs are in
F̂ .

3 The caRamel algorithm description

The caRamel algorithm belongs to the genetic algorithm
family. The idea is to start from an ensemble of parame-
ter sets (called a “population”) and to make this population
evolve following certain generation rules (Fig. 2). At each
generation, new sets are evaluated regarding the objectives,
and only the more “suitable” sets are kept to build the new
population. The caRamel algorithm is largely inspired by

1. the multi-objective evolutionary annealing simplex
method (MEAS; Efstratiadis and Koutsoyiannis, 2005;
Efstratiadis and Koutsoyiannis, 2008), with respect to
the directional search method, based on the simplexes
of the objective space, and

2. the non-dominated sorting genetic algorithm II (ε-
NSGA-II; Reed and Devireddy, 2004), for the classifi-

Figure 2. Flowchart of the caRamel algorithm.

cation of parameter vectors and the management of pre-
cision by ε dominance.

This section describes the functioning of the caRamel al-
gorithm; this algorithm has been implemented in an R pack-
age, caRamel, that is described in Appendix A.

3.1 Generation rules

The caRamel algorithm has five rules for producing new so-
lutions at each generation: (1) interpolation, (2) extrapola-
tion, (3) independent sampling with a priori parameter vari-
ance, (4) sampling with respect to a correlation structure and
(5) recombination.

The first two rules (interpolation and extrapolation) are
based on a nθ -dimensional Delaunay triangulation in the ob-
jective space Ef . They assume that two neighbouring points
in the objective space Ef have two adjacent points in the pa-
rameter space Eθ as antecedents; therefore, one can try to
“guess” the directions of improvement in the parameter space
from the improvement directions (in a Pareto sense) in the
objective space, at least near the optimal zone.

The following two rules create new parameter sets by ex-
ploring the parameter space in a nondirectional and less local
way – either by independent variations in each parameter or
by multivariate sampling using the covariance structure of all
parameter sets located near the estimated Pareto front at the
current iteration.

Finally, the recombination rule consists of creating new
parameter sets using two partial subsets derived from a pair
of previously evaluated parameter sets (inspired by Baluja
and Caruana, 1995).

3.1.1 Rule 1: interpolation

For rules 1 and 2, we use the notion of simplex which is a
generalization of the notion of a triangle to higher dimen-
sions: a 0-simplex is a point, a 1-simplex is a line segment,
a 2-simplex is a triangle and a 3-simplex is a tetrahedron. A
vertex is a point where two or more edges meet. The expla-
nation of the first rule is based on Fig. 3a. First, a triangu-
lation of the points in the objective space Ef is established:
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simplexes built with these points f (θ i) are a partition of the
explored zone in this space (Efstratiadis and Koutsoyiannis,
2005).

Let us consider a simplex with at least one vertex on the
approximated Pareto front. This simplex is the result of the
function f from an ensemble of (nf + 1) points from the
nθ -dimensional parameter space Eθ . Under the hypothesis of
continuity of f , a linear combination of the form θ̃ = w1θ1+

. . .+w(nf+1)θ (nf+1), with the barycentric coordinates wi ≥
0 and

∑
iwi = 1, might give a new Pareto-optimal solution

f (θ̃) inside this zone.
First the triangulation is established, then simplex volumes

are computed. The probability of generating one new point
with a simplex is proportional to its volume when it has at
least one point on the Pareto front (otherwise it is zero). If
the simplex is selected, then a set of barycentric coordinates
are computed by randomly generating (nf + 1) values εi in
a uniform distribution on [0,1]:

wi =
εi∑(nf+1)

j=1 εj

(1)

3.1.2 Rule 2: extrapolation

Extrapolation is based on the same hypothesis of continuity
as interpolation. In this case, it is tested to find if an improve-
ment may be obtained by extrapolating from certain direc-
tions. These directions are computed from the triangulation
by selecting the edges that have only one vertex on to the ap-
proximated Pareto front (the second vertex is dominated by
the first). These oriented edges computed from the objective
space represent directions of improvement in the parameter
space (Fig. 3b).

The length L= ‖f (θ1)−f (θ2)‖ of each selected edge
and the mean length L are computed. The probability of us-
ing an edge is proportional to its length L. In this case, the
research vector in the parameter space is defined in Eq. (2),
and a new parameter set is generated by θ̃ = θ1+λU , where
λ is a scalar from an exponential distribution with average of
1.

U =
L

L
(θ1− θ2) (2)

3.1.3 Rule 3: independent sampling with a priori
parameter variance

The drawback of the first two rules is that the generation of
new vectors is only based on a small number of existing vec-
tors. To compensate for this search by gradient and to avoid
convergence toward a local optimum, the third generation
rule has two goals:

– to make the parameters vary within a larger range than
with local rules, and

– to make the parameters vary independently of one an-
other.

When considering a vector θ from the archive Â, the third
rule is to generate nθ new vectors (θ̃k with k from 1 to nθ ) by
making each element of θ (Eq. (3) vary individually, where
σ 2
i is the a priori variance of the ith parameter and εi is a

value from a normal distribution (with an average of 0 and
a variance of 1). The a priori variance is computed for each
parameter from the bounds of variation indicated as the input
of the optimizer.

∀i ∈ [1 : nθ ]i 6=k θ̃ki = θi; if i = k θ̃ki = θki + σiεi (3)

The algorithm selects the nθ vectors that maximize each
element of the objective vector individually as well as an ad-
ditional vector that represents a “central” point of the Pareto
front. To select this vector, the minimum of each vector
θ ∈ Â is computed, and the vector that maximizes this value
is chosen.

One generation of this rule then produces (nf+1)×nθ new
vectors. For this reason, this rule is applied every K genera-
tion, with K to be defined by the user. By default, K is com-
puted so that each rule generates the same number of vectors
on average.

3.1.4 Rule 4: sampling with respect to a correlation
structure

The variance–covariance matrix6 is computed using Eq. (4),
where E[X] is the expectancy of a random variable X, θ is a
vector from the archive A, µ= Eθ∈A [θ ] is the barycentre of
A and MT is the transpose of the matrix M.

6 = Eθ∈A
[
(θ −µ)(θ −µ)T

]
(4)

This matrix reflects the correlation structure between the
parameter sets. For instance, in the case of a hydrological
model, parameters are frequently not independent of each
other. This rule intends to obtain an estimate 6̂ of 6 and
µ̂ of µ in order to generate new parameter vectors that re-
spect this correlation structure and, therefore, limit the risk
of generating “non-functional” parameter sets.

There are many possibilities in selecting the vector for
evaluating the covariance matrix:

1. Vectors may be selected from a library of “historical”
vectors for the calibrated model. The drawback is that
this library has to be previously established, and it does
not take the progression of the running calibration into
account.

2. Vectors may be selected from the archive Â that pro-
vides points on the approximated Pareto front at the run-
ning generation. The new vectors frequently improve
the front, but, as the variance is low, they do not avoid
convergence toward a local optimum.

3. All vectors of the running population may be selected.
This helps to maintain diversity, but it has a high com-

Hydrol. Earth Syst. Sci., 24, 3189–3209, 2020 https://doi.org/10.5194/hess-24-3189-2020
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Figure 3. Illustration of rules 1 and 2 based on a Delaunay triangulation in the objective space for a maximization problem with two
parameters (θ1 and θ2) and two objectives (f1 and f2): (a) interpolation computes a new parameter vector for each simplex with a non-
dominated vertex; (b) extrapolation derives a new vector for each direction of improvement.

putational cost as few new vectors will make the front
progress.

Finally, the algorithm uses a mix between items 2 and 3:
all simplexes from the first rule triangulation that have at
least one vertex in the approximated Pareto front are selected.
Reference vectors for the computation of the variance–
covariance matrix are defined by the ensemble G from the ob-
jective space whose images by f are all the vertices of these
simplexes. The estimates 6̂ and µ̂ are computed in Eqs. (5)–
(6):

µ̂= Eθ∈G [θ ] (5)

6̂ = Eθ∈G
[
(θ − µ̂)(θ − µ̂)T

]
(6)

This operation increases the number of selected points for
the averages computation significantly. However, there is still
the risk is of having a variance that is too low. To reduce this
risk, the variance of all of the parameters is increased by the

same factor (empirically doubled): ˆ̂6 = 26̂.
The new vectors are obtained from a classical procedure

for multivariate generation:

1. computation of the upper triangular matrix T with

TT T= ˆ̂6, by Cholesky decomposition;

2. generation of vectors θ̃ = µ̂+TT ·ε, where ε is a vector
with nθ independent and normally distributed compo-
nents with an average of 0 and a variance of 1.

This fourth rule enables us to randomly explore some area
of space Eθ while implicitly reducing its dimension via the

correlations between parameters. This reduces the number of
evaluations of the objective function that are needed .

3.1.5 Rule 5: recombination

With respect to rule 4, recombination considers that the pa-
rameters from a model are not independent. In a hydrological
model, they can frequently be grouped in functional blocks
(for instance, rapid runoff, base flow, snow dynamics, trans-
fer and so on). A new parameter vector is simply gener-
ated by combining blocks of parameters from vectors of the
archive Â. The parameter blocks are specific to the calibrated
model and are defined by the user.

3.2 Population downsizing

At the end of each generation, the population is kept under a
maximum size (Nmax sets). This limitation is set for memory
reasons (no need to keep poor parameter sets) and to reduce
computational time, as the triangulation computation is car-
ried out at each generation.

The population downsizing is adapted from ε-NSGA-II
(Reed and Devireddy, 2004) and is performed in three steps
(Fig. 4):

1. Pareto ranking – the parameter vectors are sorted ac-
cording to the ranking order of the Pareto level to which
they belong. Points from level 1 are non-dominated,
points from level 2 are dominated only by points from
level 1 and so on.

2. Downsizing according to the chosen precision – the ob-
jective space is partitioned by an nf -dimensional grid

https://doi.org/10.5194/hess-24-3189-2020 Hydrol. Earth Syst. Sci., 24, 3189–3209, 2020
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Figure 4. Method for population downsizing for a maximization
problem with two objectives: Pareto ranking (level 1 is the current
approximated Pareto front) and partition of the objective space ac-
cording to the chosen δi precision (only one vector by hypercube is
kept).

with the precision δi for each of the nf objective values.
All of the points in the same hypercube are considered
to be equifinal with regard to accuracy, and only one
point is kept. The selected point is the one that belongs
to the lowest Pareto level. When many points are on the
lowest level, the selected point is taken at random from
among them.

3. Keeping the population size underNmax – if the number
of sets is still above Nmax, only the Nmax sets of the
lower level are kept.

4 Optimization evaluation framework

The aim is to assess the performance of the caRamel algo-
rithm against two other optimizers using various case stud-
ies. Two optimizers have been selected for the comparison:
NSGA-II (Deb et al., 2002) and MEAS (Efstratiadis and
Koutsoyiannis, 2008). The comparison focuses on different
aspects: optimization evolution evaluated by specific metrics
and optimization results in the objective space, parameters
space and observable space. This section presents the opti-
mizer configuration, the evaluation metrics and the four case
studies.

4.1 Optimizer configurations

The caRamel algorithm is used in its general form, with a
generation of five new parameters sets for each rule by itera-
tion, involving an average of 25 parameter sets by generation.

NSGA-II (Deb et al., 2002) is called by using the nsga2
function from the mco “Multiple Criteria Optimization Al-
gorithms and Related Functions” (Mersmann et al., 2014) R
package. The arguments are the function to minimize, the in-
put and output dimensions, the parameter bounds, the num-
ber of generations, the size of the population, and the values

for the crossover, mutation probability and distribution index.
Some previous calibration experiments have been conducted
to determine the best parameter configurations. NSGA-II has
been used with a crossover probability set to 0.5 and muta-
tion probability set to 0.3.

The MEAS algorithm (Efstratiadis and Koutsoyiannis,
2005) combines a performance evaluation procedure based
on a Pareto approach and the concept of feasibility, an evolv-
ing pattern based on the downhill simplex method, and a
simulated annealing strategy, to control randomness during
evolution. The algorithm evolution is sensitive to the value
of the mutation probability which has been adapted to each
case study according to its complexity (5 % for Kursawe and
50 % for the other case studies).

For each optimizer, the end of one optimization is set to
a maximum number of model evaluations depending on the
case studies. As the algorithms use random functions, 40 op-
timizations of each test case have been run for each opti-
mizer to obtain representative results. In order to focus on
the evolution of the optimization, the initial population is the
same for each optimizer (40 initial populations for each case
study).

We chose to run an important number of model evalua-
tions and optimizations to get representative results and as-
sess the reproducibility of the optimization. Other bench-
mark methodology would be conceivable, such as that pre-
sented by Tsoukalas et al. (2016) where several test func-
tions and two water resources applications are implemented
to compare the surrogate-enhanced evolutionary annealing
simplex (SEEAS) algorithm to four other mono-objective op-
timization algorithms. In this study, two alternative compu-
tational budgets (indicated by the maximal number of model
evaluations) are considered that impact the parameters of the
optimizers.

4.2 Optimization metrics

To evaluate the optimizer performance, we chose metrics
from the literature. Evaluating optimization techniques ex-
perimentally always involves the notion of performance.
In the case of multi-objective optimization, the definition
of quality is substantially more complex than for single-
objective optimization problems, because the optimization
goal itself consists of multiple objectives (Zitzler et al.,
2000). Riquelme et al. (2015) categorize the metrics to eval-
uate three main aspects:

– accuracy, which is the closeness of the solutions to the
theoretical Pareto front (if known) or relative closeness;

– diversity, which can be described by the spread of the set
(range of values covered by the solutions) and the dis-
tribution (relative distance among solutions in the set);

– cardinality, which qualifies the number of Pareto-
optimal solutions in the set.

Hydrol. Earth Syst. Sci., 24, 3189–3209, 2020 https://doi.org/10.5194/hess-24-3189-2020
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To quantify these aspects, we selected three different met-
rics that are evaluated in the objective space:

1. hypervolume (HV), which is a volume-based index that
takes accuracy, diversity and cardinality into account
(Zitzler and Thiele, 1999) and computes the volume be-
tween the vectors of the estimated Pareto front F̂ and a
reference point;

2. generational distance (GD), which is a distance-based
accuracy performance index (Van Veldhuizen, 1999,
Eq. 7) that is expressed as

GD=

(∑n
i=1d

2
i

)1/2
n

, (7)

where n is the number of vectors in the approximated
Pareto front F̂ , and di is the Euclidean distance between
each vector and the nearest member of the reference
front;

3. generalized spread (GS), which evaluates the diversity
of the set (Zhou et al., 2006; Jiang et al., 2014).

The evaluation of the GS and GD metrics requires us to
establish a reference front. For each case study, this reference
front is built by evaluating the Pareto front on all of the final
optimization results of all optimizers.

4.3 Case studies

Four case studies have been designed to have an increas-
ing complexity: case study 1 is an analytical example with a
Kursawe test function (Kursawe, 1991); case study (2) is on
a pluvial catchment with a GR4J open-source hydrological
model (Coron et al., 2017, 2019); case study (3) is on a plu-
vial catchment with a MORDOR-TS semi-distributed model
(Rouhier et al., 2017); and case study (4) is on a snowy catch-
ment, also with a MORDOR-TS model.

4.3.1 The Kursawe test function

The objective of a test function is to evaluate some character-
istics of optimization algorithms. The final Pareto front has a
specific shape (non-convex, asymmetric and discontinuous)
with an isolated point that the optimizer has to accurately re-
produce. The Kursawe function is a benchmark test for many
researchers (Lim et al., 2015). It has three parameters (x1,
x2 and x3) and two objectives (Obj1 and Obj2) to minimize
(Kursawe, 1991, Eq. 8).

Obj1 =−10 ·
(
e
−0.2

√
x2

1+x
2
2 − e

−0.2
√
x2

2+x
2
3

)
Obj2 = |x1|

0.8
+ 5 · sin(x3

1)+ |x2|
0.8
+ 5 · sin(x3

2)

+|x3|
0.8
+ 5 · sin(x3

3)

(8)

The optimizations are run on 50 000 model evaluations.
The R script to run the Kursawe function optimization with
caRamel is available in Appendix B or as a vignette in the
caRamel package.

4.3.2 Calibration of the GR4J model on a pluvial
catchment

The GR4J hydrological model is a widely used global
rainfall–runoff model (Perrin et al., 2003) that has been im-
plemented in an open-source R package airGR (Coron et
al., 2017, 2019). This package contains a data sample from a
catchment called “Blue River at Nourlangie Rock” (360 km2,
code L0123001), which has a pluvial regime (Fig. 5a). The
advantage of using this case study is in having an open-
source script with open data.

GR4J has four parameters to calibrate: the production store
capacity X1, the inter-catchment exchange coefficient X2,
the routing store capacity X3 and the unit hydrograph time
constant X4.

The calibration is done on the daily time series for the pe-
riod from 1990 to 1999. The Kling–Gupta efficiency (KGE,
Gupta et al., 2009) is frequently used in hydrology. The KGE
can be split into three components that reflect the correla-
tion between the simulated and observed values (KGEr ), the
bias in standard deviation (KGEα) and the bias in volume
(KGEβ ). The calibration is carried out on these three compo-
nents (Eq. 9).

KGEr = 1−
√
(1− r)2

KGEα = 1−
√
(1−α)2, with α = σs/σo

KGEβ = 1−
√
(1−β)2, with β = µs/µo,

(9)

where r is the linear correlation coefficient between simu-
lated and observed time series, σs and σo represent their stan-
dard deviations, and µs and µo represent their mean values.

For each component, the optimal value is 1 and the opti-
mization consists of a maximization. At the end of the op-
timization only the sets with KGEβ > 0 are considered, as a
KGEβ with a negative value indicates poor quality for hydro-
logical results. This leads us to exclude a few sets for calibra-
tion with NSGA-II and caRamel but not for calibration with
MEAS.

The R script to run an optimization of the GR4J model
with caRamel is available in Appendix C.

4.3.3 Calibration of the MORDOR-TS model on two
contrasting catchments

The spatially distributed MORDOR-TS rainfall–runoff
model (Rouhier et al., 2017) is a spatialized version of
the conceptual MORDOR-SD model (Garavaglia et al.,
2017) that has been widely used for operational applica-
tions at Électricité de France (EDF; the French electric util-
ity company). The catchment is divided into elementary sub-
catchments connected according to the hydrographic net-
work which constitutes a hydrological mesh.

This model was implemented at a daily time step for
two French catchments with contrasting climates. The Tarn
catchment at Millau (Fig. 6a) covers an area of 2335 km2

and has a moderate altitude ranging from 350 to 1600 m. The
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Figure 5. Daily discharge regimes at the three catchments studied.

Figure 6. Maps of the catchments studied: (a) Tarn at Millau (2335 km2) and (b) Durance at La Clapière (2170 km2).

regime is pluvial, with almost no influence from snow. The
Durance at La Clapière catchment (2170 km2, Fig. 6b) is lo-
cated in the French Alps and has elevations ranging from 800
to about 4000 m. Its hydrological regime is strongly influ-
enced by snow, with a maximum during the melting season
in June (Fig. 5c).

The hydrological meshes have been built with an average
cell area of 100 km2, meaning that 28 cells are needed for the
Tarn catchment and 22 cells for the Durance catchment.

MORDOR-TS has 22 free parameters in its comprehen-
sive formulation. For the Tarn case study, a simplified formu-

lation is adopted with 12 free parameters to calibrate in order
to describe the functioning of conceptual reservoirs, evapo-
transpiration correction and wave celerity (Table 1). For the
Durance catchment, parametrization of the snow module of
MORDOR-TS is more complex, and 16 parameters are to be
calibrated for the hydrological model. The parameter distri-
bution is uniform for the two case studies, which means that
the same set of parameters applies to all cells. Calibration
is conducted over 10 years (1 January 1991–31 December
2000) based on three objectives that have to be maximized.
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Table 1. Parameters to calibrate for MORDOR-TS and bounds of variation.

Parameter Units Prior range Description

cetp – [0.7, 1.3] Potential evapotranspiration multiplicative correction factor
cp – [0.9, 1.1] Precipitation multiplicative correction factor
gtz (◦C (100 m)−1) [−0.8, −0.4] Air temperature gradient
umax (mm) [30, 500] Maximum capacity of the root zone
lmax (mm) [30, 500] Maximum capacity of the hillslope zone
zmax (mm) [30, 500] Maximum capacity of the capillarity storage
evl – [1.5, 4] Outflow exponent of storage L (intermediate storage)
kr – [0.1, 0.9] Runoff coefficient
evn – [1, 4] Outflow exponent of storage N (deep storage)
lkn (mm h−1) [−8, −1] Outflow coefficient of storage N
kf (mm ◦C−1 d−1) [1, 5] Constant part of melting coefficient
kfp (mm ◦C−1 d−1) [0, 5] Variable part of melting coefficient
lts – [0.7, 1] Smoothing parameter of snowpack temperature
eft (◦C) [−3, 3] Additive correction of melting temperature
efp (◦C) [−3, 3] Additive correction of rain/snow partition temperature
cel (m s−1) [0.1, 10] Wave celerity
dif (m2 s−1) [10, 5000] Wave diffusion

For the Tarn catchment, the calibration is based on the
Nash–Sutcliffe efficiencies (NSE; Nash and Sutcliffe, 1970)
at three gauging stations: the catchment outlet (Tarn at Mil-
lau) and two interior points (Tarn at Montbrun and Dourbie at
Gardiès). For the Durance catchment, the Kling–Gupta effi-
ciency (KGE; Gupta et al., 2009) is computed at three gaug-
ing stations: the catchment outlet (Durance at La Clapière)
and two interior points (Durance at Val-des-Prés and Guil at
Mont-Dauphin). The theoretical optimum is the point (1, 1,
1) in the objective space.

5 Results of calibration evaluations

Four aspects are considered with respect to the results of the
case studies: the shape of the final Pareto fronts, the dynam-
ics of the optimizations, the distribution of the calibrated pa-
rameters and the consequences of the latter on simulated dis-
charges for the hydrological case studies. To illustrate the re-
sults on the simulated discharges, a “best compromise” set
has been selected regarding the distance to point (1,1,1) in
the objective space for each hydrological case study.

5.1 Final Pareto front

First of all, it is important to accurately reproduce the discon-
nected Pareto front for the Kursawe test function, and this is
the case for all of the optimizers (Fig. 7) with no noticeable
differences between the solutions. This confirms the effec-
tiveness of three different algorithms on a low-dimension re-
search benchmark for the multi-objective optimization.

Concerning the three hydrological case studies, the solu-
tions of the Pareto fronts look quite similar for caRamel and
NSGA-II and more narrow with MEAS (Fig. 8). The num-

Figure 7. Pareto front after 50 000 model evaluations with caRamel
(1183 points), NSGA-II (1780 points) or MEAS (687 points) for the
Kursawe test function.

ber of sets for the Pareto front changes depending on the
case, and there is no rank for the optimizers. For the Blue
River study, there are 1172 sets with caRamel, 878 sets with
NSGA-II and 268 points with MEAS; there are 1457, 789
and 1882 sets for the Tarn study, and 708, 408 and 525 sets
for the Durance study with caRamel, NSGA-II and MEAS
respectively. The differences between Pareto fronts are not a
priori in favour of a single MEAS-based algorithm. They are
given for a limited number of cases which are not necessarily
representative of a general behaviour.

5.2 Dynamics of the optimizations

Figure 9 summarizes the dynamics of the optimizations for
the four case studies.

The caRamel algorithm converges more quickly for accu-
racy (the HV and GD metrics in most cases). The caRamel’s
dynamics is closer to NSGA-II’s dynamics than to MEAS’s
dynamics, as they have almost the same final values for the
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Figure 8. Pareto fronts over 40 optimizations with the caRamel, NSGA-II and MEAS optimizers for each hydrological case study: Blue
River with GR4J (a–c), Tarn with MORDOR-TS (d–f) and Durance with MORDOR-TS (g–i). The red point represents a “best compromise”
set that is used to illustrate model results.

three metrics. This confirms the distinctive behaviour be-
tween the two classes of algorithms.

With respect to the diversity criteria, GS dynamics is dif-
ferent for the Kursawe test case than for the hydrological
case studies. For the Kursawe test case, the optimal final front
has a spread, so all optimizers give the same results. For the
hydrological cases, the optimal solution is a point (1,1,1);
thus, the Pareto front may get smaller with the optimization.
NSGA-II and caRamel look alike, as they generate more di-
versity than MEAS (GS final values). On average, caRamel
gives better values than NSGA-II for the three real cases.

Finally, the envelopes over 40 optimizations are compara-
ble for the three optimizers, which means that reproducibil-
ity is always obtained but with different regularities depend-
ing on the case or the optimizer without any notable feature.
In some cases, a smoother statistical GS convergence would
have implied more optimizations.

5.3 Parameter distribution

Figure 10 displays the distribution of parameters from the
three case studies.

In the parameter space, the optimizers provide very simi-
lar results that explore the equifinality of the model, mean-
ing that different parameter sets show similar performance
(Fig. 10). Some parameters (such as kr or lkn) may have op-
timized values on the whole range defined by the bounds,
whereas other parameters are better constrained (X4 and cel).
These constitute a family of sets that are optimal with regard
to the chosen objectives.

The difference in the diversity of the final sets is also visi-
ble in the parameter distributions. Distributions are quite sim-
ilar for caRamel and NSGA-II but are much narrower for
MEAS. This once again confirms the different behaviour of
MEAS, with weaker general performance for the cases stud-
ied here.
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Figure 9. Metrics’ evolution over 40 optimizations with caRamel, NSGA-II and MEAS, showing the mean evolution and 10 %–90 % quan-
tiles of the metrics with respect to the number of model evaluations: (a–c) metrics for the Kursawe test function; (d–f) metrics for the GR4J
calibration of at Nourlangie Rock; (g–i) metrics for the MORDOR-TS calibration of Tarn at Millau; (j–l) metrics for the MORDOR-TS
calibration of Durance at La Clapière.

5.4 Impact on model results

The consequences with respect to the simulated discharges
are displayed in Fig. 11. The envelopes with NSGA-II and
caRamel are quite similar, whereas the envelope with MEAS
is narrower, as expected. This confirms that caRamel and
NSGA-II generate more diversity on their Pareto front. The

red line represents the simulated discharges with the best
compromise set and fits quite well with the observed dis-
charges. Multi-objective calibration allows for a range of
variation of the calibrated discharges around the best com-
promise simulation.

Figure 11c represents a flood event on the Tarn River at
Millau. The observed discharge points are in the envelope of
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Figure 10. Calibrated parameter distributions for the sets on the Pareto front (y limits are the calibration bounds, except for X1 to X4) with
caRamel, NSGA-II and MEAS for the three hydrological case studies: Blue River (first block of four parameters), Durance River (second
block of 16 parameters) and Tarn River (third block of 10 parameters). Parameter values from the “best compromise” set are displayed in
red.

simulation. The best compromise simulation does not accu-
rately reproduce the flood peak. The figure also displays the
simulated discharges obtained by optimizing parameters on
the three gauging stations separately, and the simulation with

the set that optimizes the NSE at Millau fits better with the
observed points.

Hydrol. Earth Syst. Sci., 24, 3189–3209, 2020 https://doi.org/10.5194/hess-24-3189-2020



C. Monteil et al.: Multi-objective calibration – the caRamel algorithm 3201

Figure 11. Observed and simulated discharges for the three case studies. “Observations” refer to the observed discharges, “Best compromise”
refers to the best compromise simulated discharges and “Envelope” refers to the simulated discharges envelope using all parameter sets on the
Pareto front (over 40 optimizations) with caRamel, NSGA-II and MEAS. (a) Daily runoff regime of Blue River at Nourlangie Rock (1990–
1999); (b) daily runoff regime of Durance at La Clapière (1991–2000); (c) flood event for the Tarn River at Millau (14 April 1993–3 June
1993).

6 Conclusions

The caRamel function is an optimization algorithm for multi-
objective calibration, and it results in a family of parameter
sets that are Pareto-optimal with regard to the different ob-
jectives. The algorithm is a hybrid of the MEAS algorithm
(Efstratiadis and Koutsoyiannis, 2005), using the directional
search method based on the simplexes of the objective space,
and the ε-NSGA-II algorithm, using the archiving manage-
ment of the parameter vectors classified by ε dominance
(Reed and Devireddy, 2004). The combination of stochastic
and gradient-like parameter generation rules helps the con-

vergence of optimization while preserving the diversity of
the population in both the objective and parameter spaces.
Four case studies with increasing complexity have been used
to compare caRamel with NSGA-II and MEAS. The results
are quite similar between optimizers and show that optimiza-
tion converges more quickly with caRamel.

An optimization algorithm might be delicate to use be-
cause of the choice of input arguments, which are specific to
the algorithm and might require some “expert knowledge”.
The sensitivity to caRamel internal parameters is not pre-
sented in this paper, but we have carried out some sensitivity
analyses using the Morris method (Morris, 1991) in order to
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recommend some default values to the user. First, it is recom-
mended that users assign the same weight to each generation
rule by indicating the same number of parameter sets to gen-
erate. It is advantageous to produce a small number of sets
by generation in order to reduce the number of model eval-
uations and obtain more rapid convergence. By default, five
sets are generated for each rule. The size of the initial popu-
lation should be large enough to have enough variability (at
least 50 sets for a complex model). Moreover, as convergence
can be sensitive to the randomly chosen initial population, it
is recommended that the user run two or three optimizations
to assess reproducibility.

Multi-objective optimization may require thousands of
evaluations, which can be a limitation for the calibration
of time-consuming models. To cope with this issue, parallel
computation is implemented in the caRamel R package.

Better consideration of equality or inequality constraints,
such as the relationship between two parameters, could be
an improvement. Another perspective would be the ability of
caRamel to deal with discrete parameters.

Hydrol. Earth Syst. Sci., 24, 3189–3209, 2020 https://doi.org/10.5194/hess-24-3189-2020



C. Monteil et al.: Multi-objective calibration – the caRamel algorithm 3203

Appendix A: The caRamel R package

The caRamel R package has been designed as an opti-
mization tool for any environmental model, provided that
it is possible to evaluate the objective functions in R. The
main function, caRamel, is called with the following syntax:
caRamel(nobj, nvar, minmax, bounds, func, popsize, arch-
size, maxrun, prec). Arguments are detailed in Table A1.
The main argument of caRamel is the objective function that
has to be defined by the user. This enables flexibility, as the
user gives all of the necessary information: the number and
the definition of all the objectives, the minimization or max-
imization goal for each objective function, the number of
parameters to calibrate and their bounds, and other numer-
ical parameters such as the maximum number of simulations
allowed. Additional optional arguments give the following
possibilities:

– creation of blocks/subsets of parameters that should be
jointly recombined (for example, parameters of a same
module);

– choice of parallel or sequential computation;

– continuation of optimization starting from an existing
population;

– saving of the population after each generation or only
the final one;

– indication of the number of parameter sets produced by
generation.

As a result, the function returns a list of six elements:

1. success – a logical, “TRUE” if the optimization process
ran with no errors,

2. parameters – a matrix of parameter sets from the Pareto
front (dimension: number of sets in the front, number of
calibrated parameters),

3. objectives – a matrix of associated objective values (di-
mension: number of sets in the front, number of objec-
tives),

4. save_crit – a matrix that describes the evolution of the
optimization process; for each generation, the first col-
umn is the number of model evaluations, and the follow-
ing columns are the optimum of each objective taken
separately (dimension: number of generations, number
of objectives +1),

5. total_pop – total population (dimension: number of pa-
rameters sets, number of calibrated parameters + num-
ber of objectives).

6. gpp – the calling period for the third generation rule (in-
dependent sampling with a priori parameters variance).
It is computed by the algorithm if the user does not fix
it.

The R package contains an R vignette that gives optimiza-
tion examples of the Schaffer function (Schaffer, 1984; two
objectives, one parameter) and the Kursawe function (Kur-
sawe, 1991; two objectives, three parameters).
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Table A1. Arguments of the caRamel() function. Optional arguments are shown in italic font.

Name Type Description

nobj Integer, length = 1 Number of objectives to optimize (at least two)

nvar Integer, length = 1 Number of parameters to calibrate

minmax Logical, length = nobj Logical vector that indicates whether each objective should be maxi-
mized (TRUE) or minimized (FALSE)

bounds Matrix, nrow = nvar,
ncol = 2

Upper and lower bounds for the variables

func Character, length = 1 The function to optimize (defined by the user), with VecObj = func(i),
where i is the tested set index in the population matrix (x), and VecObj
is the vector of objectives for this set.

popsize Integer, length = 1 Population size for the genetic algorithm

archsize Integer, length = 1 Size of the Pareto front

maxrun Integer, length = 1 Maximum number of model runs

prec Double, length = nobj Desired precision for the objectives (used for downsizing the popula-
tion)

repart_gene Integer, length = 4 Number of new parameter sets for each rule and per generation

gpp Integer, length = 1 Calling period for rule (3)

blocks List of vector integers Functional groups for parameters

pop Matrix, nrow = nset,
ncol = nvar or nvar+nobj

Initial population (used to restart an optimization)

objnames Character, length = nobj Names of the objectives

listsave List of characters Names of the listing files (NULL by default: no output)

write_gen Integer, length = 1 If the integer = 1, it save files “pmt” and “obj” at each generation (0
by default)

carallel Logical, length = 1 Run parallel computations (TRUE by default)

numcores Integer, length = 1 Number of cores for the parallel computations (all cores by default)

funcinit Character, length = 1 The function (defined by the user) applied on each node of the cluster for
initialization for parallel computation (for example, load of packages or
copy of data). Arguments must be cl and numcores.

graph Logical, length = 1 Plot graphical output at each generation (TRUE by default)
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Appendix B: Example of R script for Kursawe test
function optimization

Appendix C: Example of R script for GR4J
optimization
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Code availability. The data analysis was performed with
the open-source environment R (https://www.r-project.org;
R Core Team, 2019). The algorithm is provided as an
R package “caRamel”, which is available from GitHub
(https://doi.org/10.5281/zenodo.3895601; Zaoui and Monteil,
2020) or from CRAN (https://cran.r-project.org/package=caRamel;
Le Moine et al., 2019). The Blue River at Nourlangie Rocks
case study was run using the airGR package for the
GR4J hydrological model and for the data set (available at
https://cran.r-project.org/package=airGR; Coron et al., 2019).
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