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Electricity load forecasting is a necessary capability for power system operators and electricity market participants. Both demand and supply characteristics evolve over time. On the demand side, unexpected or extreme events as well as longer-term changes in consumption habits affect demand patterns. On the production side, the increasing penetration of intermittent power generation significantly changes the forecasting needs. We address this challenge in three ways. First, we consider probabilistic (quantile) rather than point forecasting; indeed, uncertainty quantification is required to operate electricity systems efficiently and reliably. The probabilistic forecasts are generated using both linear and non-linear quantile regressions applied to the residuals of the mean forecasting model. Second, our approach is Adaptive; we have developed models that incorporate the most recent observations to automatically respond to changes in the underlying process. Our adaptation methodology leverages the Kalman filter, which has previously been successfully employed for adaptive load forecasting, as well as Online Gradient Descent -a combination of an incremental strategy and pinball loss. Third, we extend the adaptive setting to Extreme scenarios by using the aforementioned methods to compute an adaptive threshold used as a reference in recently developed machine learning models targeting extreme values. Finally, we apply our different approaches on the french daily electricity consumption as use case.

Introduction

Forecasting electricity demand is fundamental in the process of maintaining supply-demand balance. This permanent equilibrium is necessary to maintain a reliable supply of electricity and to avoid damaging infrastructure. As electricity cannot be stored on a large scale, forecasts are crucial to informing production planning. This necessity explains why energy forecasting has gathered so much attention from the time series and forecasting community [START_REF] Hong | Energy forecasting: A review and outlook[END_REF]. The recent increase in electricity prices in Europe further emphasizes the importance of demand forecast quality.

Energy management requires risk management tools. Forecasting models are random estimates of quantities such as demand or renewable production. It is thus essential to provide insights on the distribution to take decisions such as positions on the energy market or grid optimization. Previous works on probabilistic forecasting were proposed in the electricity demand literature. Following the good performances of Generalized Additive Models (GAMs) for conditional mean forecasting (see e.g. [START_REF] Fan | Forecast short-term electricity demand using semiparametric additive model[END_REF][START_REF] Pierrot | Short-term electricity load forecasting with generalized additive models[END_REF]), [START_REF] Gaillard | Additive models and robust aggregation for gefcom2014 probabilistic electric load and electricity price forecasting[END_REF][START_REF] Fasiolo | Fast calibrated additive quantile regression[END_REF] and [START_REF] Gilbert | Probabilistic load forecasting for the low voltage network: Forecast fusion and daily peaks[END_REF] respectively proposed quantile GAMs and a variant of GAMLSS (Location Scale and Shape) to model the overall distribution. While these models perform well on stationary data, electricity data often evolve over time. For example, the COVID crisis have modified our electricity consumption habits [START_REF] Jiang | Impacts of covid-19 on energy demand and consumption: Challenges, lessons and emerging opportunities[END_REF] and, more recently, the recent increase in electricity prices in Europe have entailed a drop in consumption [START_REF] Doumèche | Human spatial dynamics for electricity demand forecasting: the case of france during the 2022 energy crisis[END_REF]. These changes cannot be captured by traditional offline quantile regression methods. [START_REF] Vilmarest | Adaptive probabilistic forecasting of electricity (net-)load[END_REF] have proposed two methods to adapt probabilistic forecasts: the Kalman filter coupled with GAMs, which has previously been successfully employed for adaptive point load forecasting, as well as Online Gradient Descent-a combination of an incremental strategy and pinball loss.

However, due to the scarcity of data points exceeding extreme levels, these methods can fail at estimating conditional quantiles at extreme levels, which is an important task in risk assessment for rare events. Asymptotic results from extreme value theory can however be used to extrapolate beyond the range of the data. In [START_REF] Browell | Probabilistic forecasting of regional net-load with conditional extremes and gridded nwp[END_REF], the Generalized Pareto Distribution (GPD) is proposed to forecast the deviation of the net demand (consumption minus renewable production) over a reference quantile using a GAMLSS approach (the parameters of the Pareto distribution depends on covariates via a GAM equation). In the same direction, several machine learning approaches have been introduced recently to model extreme quantiles as exceedance over a reference quantile, see [START_REF] Gnecco | Extremal random forests[END_REF] for random forest estimates, [START_REF] Pasche | Neural Networks for Extreme Quantile Regression with an Application to Forecasting of Flood Risk[END_REF] for neural networks, [START_REF] Velthoen | Gradient boosting for extreme quantile regression[END_REF] for gradient boosting machine. However, all these methods have been presented in an offline setting, supposing an implicit stationarity of the data generating process.

In this paper, we propose the first adaptation of extremal machine learning models to the non-stationary case. We naturally follow a three-steps procedure combining recent advances in adaptive quantile forecasting and extreme quantile regression. In the first two steps, we perform an adaptive quantile forecast similarly to [START_REF] Vilmarest | Adaptive probabilistic forecasting of electricity (net-)load[END_REF] for an intermediate level q 0 . In the last step, we predict the extreme quantile based on the GPD likelihood. We apply our different approaches to the French daily electricity consumption as real case study.

Intermediate quantile models

Assume we observe a stream of data y t ∈ R and x t ∈ R d for t ≥ 1 with d ≥ 1. Let F t = σ(x 1 , y 1 , . . . , x t , y t ) be the natural filtration (modeling the information contained in the observations up to time t). Then, we estimate the conditional distribution using the following two settings :

-Offline or Batch (Sections 2.1 and 3.1). The model is learned on a training period, for instance on data up to time n train . We estimate L(y t | x t , F ntrain ), the conditional distribution of y t given x t , F ntrain . -Online or Adaptive (Sections 2.2 and 3.1). The model is learned sequentially.

We estimate L(y t | x t , F t-1 ) at each time t.

Offline quantile Regression models

In this section we present the three offline quantile regression approaches for probabilistic forecast: gam.qr, qgam and gam.qgam. The first one (gam.qr) is a two step approach for probabilistic forecasting motivated by [START_REF] Gaillard | Additive models and robust aggregation for gefcom2014 probabilistic electric load and electricity price forecasting[END_REF] and [START_REF] Browell | Probabilistic forecasting of regional net-load with conditional extremes and gridded nwp[END_REF]. It was developed to solve the tricky issue of GAMs for quantile regression, at the cost of assuming that the smooth GAM effects are the same (up to a multiplicative factor) for the mean and all quantiles. The second approach (qgam) is based on the QGAM method of [START_REF] Fasiolo | Fast calibrated additive quantile regression[END_REF] and removes this restriction by minimizing a smoothed version of the pinball function instead of a likelihood function. This approach achieves accurate quantile point estimates and credible interval coverage. The third one can be seen as a combination of the two first.

To formalize these approaches, let us first consider a GAM estimation of the conditional mean based on the following model.

y t = d j=1 f j (x t,j ) + ϵ t , ϵ t ∼ N (0, σ 2 ) , (1) 
where the smooth effects f j are built using linear combinations of spline bases (see [START_REF] Wood | Generalized additive models: an introduction with R[END_REF]). An optimization of the smooth effects on the training set yields an estimate ŷt of E[y t | x t , F ntrain ].

Similarly, the qgam method is based on a smooth additive representation of the conditional quantile instead of the conditional mean. Namely,

Q q (y t | x t ) = d j=1 f j,q (x t,j ) , (2) 
where Q q (y | F) denotes the conditional quantile at level q ∈ (0, 1) of L(y | F).

The smooth effects f j,q are obtained by minimizing a smooth version of the pinball loss called the Extended Log-F (see [START_REF] Fasiolo | Fast calibrated additive quantile regression[END_REF] for details). Again, an optimization of these effects on the training set yields an estimate of Q q (y t | x t , F ntrain ).

The two other approaches consist in estimating the conditional quantiles of the residuals r t := y t -ŷt of [START_REF] Athey | Generalized random forests[END_REF]. This takes into account the fact that r t is not exactly equal to ϵ t and may therefore also depend on the covariates x t or could be non Gaussian. An estimate of the conditional quantiles of y t are then obtained using the relation Q q (y t | x t ) = ŷt + Q q (r t | x t ).

In the gam.qgam method, we use a smooth additive model as in [START_REF] Balkema | Residual Life Time at Great Age[END_REF] for Q q (r t | x t ). In the gam.qr method, we assume the linear relation Q q (r t | x t ) = β ⊤ q f (x t ) where β q ∈ R d+1 and f (x t ) := (f 1 (x t,1 ), . . . f d (x t,d ), 1) ⊤ ,

is the concatenation of the standardized smooth effects f j of (1). The vector β q is then estimated by minimizing the pinball loss on the training set [START_REF] Koenker | Regression quantiles[END_REF], that is βq ∈ arg min β∈R d 0 ntrain t=1 ρ q (y t -ŷt , β ⊤ f (x t )) , with ρ q (y, ŷq ) := (1 {y<ŷq} -q)(ŷ q -y) .

(4)

Online quantile Regression models

We consider here the two adaptive models proposed in [START_REF] Vilmarest | Adaptive probabilistic forecasting of electricity (net-)load[END_REF] to estimate the conditional quantile Q q (y t | x t , F t-1 ). For conciseness, we present them briefly.

Kalman based model

The main idea is to plug a linear Kalman filter on the GAM effects in the same philosophy as for the gam.qr approach. We refer to this method as gkal. More precisely, we consider the following linear Gaussian state-space model.

θ t -θ t-1 ∼ N (0, Q) y t -f (x t ) ⊤ θ t ∼ N (0, σ 2 ) , (5) 
where f (x t ) is defined in [START_REF] Browell | Probabilistic forecasting of regional net-load with conditional extremes and gridded nwp[END_REF], Q is the state noise covariance matrix, σ 2 the space noise variance and we assume that the noises are independent. Estimation in a linear Gaussian state-space model with known variances has been optimally solved in [START_REF] Kalman | New results in linear filtering and prediction theory[END_REF] providing recurrent equation for θ t . More formally, it is well known that we have θ t | F t-1 ∼ N ( θt , P t ) with P t|t = P t -P t f (x t )f (x t ) ⊤ P t f (x t ) ⊤ P t f (x t ) + σ 2 θt+1 = θt -P t|t σ 2 f (x t )(f (x t ) ⊤ θt -y t )

P t+1 = P t|t + Q .
From the state posterior distribution and the observation distribution [START_REF] Fan | Forecast short-term electricity demand using semiparametric additive model[END_REF], we deduce an estimate of L(y t | x t , F t-1 ). As explained in [START_REF] Vilmarest | Adaptive probabilistic forecasting of electricity (net-)load[END_REF], the variances σ 2 and Q play a crucial role in the performance on the Kalman filter similarly to the gradient steps in online gradient descent. In our case study, we use the iterative grid search approach implemented in the viking package [START_REF] De Vilmarest | viking: State-Space Models Inference by Kalman or Viking[END_REF] as in [START_REF] Vilmarest | Adaptive probabilistic forecasting of electricity (net-)load[END_REF][START_REF] Obst | Adaptive methods for short-term electricity load forecasting during covid-19 lockdown in france[END_REF][START_REF] De Vilmarest | State-space models for online post-covid electricity load forecasting competition[END_REF] providing a diagonal sparse matrix Q. A more sophisticated Variance Tracking algorithm has however been developed in [START_REF] De Vilmarest | Viking: Variational Bayesian Variance Tracking[END_REF] where Q and σ are also time varying and could potentially switch automatically between stable periods and more volatile ones. For future work, we will leave this alternative open.

Online Gradient Descent The Kalman filter is an optimal gradient descent solution for Gaussian data. To relax this assumption, [START_REF] Vilmarest | Adaptive probabilistic forecasting of electricity (net-)load[END_REF] proposes to use Online Gradient Descent (OGD). This consists in updating the parameters of an offline linear quantile model (typically gam.qr) according to the gradient of the pinball loss over time. Suppose we have previously estimated an offline quantile regression model and we can reduce that model to a set of vectorial parameters βq for each quantile; for example, the case gam.qr where our model is ŷt + β⊤ q f (x t ). To update βq as a function of time, we use OGD to recursively estimate the parameter vector βt,q . At each time step, we update it with a step in the direction opposite to the gradient of the loss, that is βt+1,q = βt,q -α ∂ρ q (y t -ŷt , β ⊤ f (x t )) ∂β β= βt,q .

To tune the gradient step size α online, [START_REF] Vilmarest | Adaptive probabilistic forecasting of electricity (net-)load[END_REF] proposes to follow an expert aggregation strategy as in [START_REF] Zaffran | Adaptive conformal predictions for time series[END_REF]. First, we run the OGD on a grid (α k ) 1≤k≤K . At each time t, it produces a forecast ŷ(k) t,q for each step size α k . Second, we combine these forecasts using the Bernstein Online Aggregation (BOA) method introduces in [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]. The principle of aggregation is to forecast ŷt,q = K k=1 p (k) t,q ŷ(k) t,q , where the weights p (k) t,q are obtained sequentially. The properties obtained from the online learning literature guarantee that the total loss of the aggregation has a small regret compared to the total loss of the best expert. We refer to this method as gam.ogd.

Other methods

The other methods aim to relax the Gaussian assumption by fitting offline quantile regression on the Kalman residuals similarly to the methods presented in Section 2.1. This approach results in two variants: gkal.qr and gkal.qgam which respectively fit a linear quantile regression and a QGAM on the Kalman residuals. Finally, we also include a last method, refered to as gkal.ogd, consisting in an online estimation (by OGD with BOA) of quantiles based on the Kalman residuals.

Adaptive extreme quantile regression

To accurately estimate the extreme quantiles, we rely on extreme value theory since usual quantile regression methods may not be suitable for extreme quantiles where there are few or no training data points. The Pickands-Balkema-De Haan theorem ( [START_REF] Balkema | Residual Life Time at Great Age[END_REF], [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF]) states that, under regularity assumptions on the tail behavior of a random variable, the law of its exceedances above a large threshold can be approximated with a Generalized Pareto Distribution (GPD). Extreme quantile models therefore rely on the assumption that, for a well chosen threshold u t ∈ R, the distribution of y t -u t given y t > u t and x t is a GPD with parameters θ(x t ) = (σ(x t ), ξ(x t )), that is

P (y t -u t > z | y t > u t , x t ) = 1 + ξ(x t ) σ(x t ) z -1/ξ(xt) + . (6) 
Under this assumption, we get that for any y ∈ R,

P (y t > y | x t ) = P (y t > u t | x t ) 1 + ξ(x t ) σ(x t ) (y -u t ) -1/ξ(xt) + , which, taking u t = Q q0 (y t | x t )
for an intermediate quantile level q 0 ∈ (0, 1), gives that for any q > q 0 ,

Q q (y t | x t ) = Q q0 (y t | x t ) + σ(x t ) ξ(x t ) 1 -q 1 -q 0 1/ξ(xt) -1 . (7) 
Recently introduced Extremal Machine Leaning Models (EMLM) propose to estimate the conditional quantile at extreme levels by [START_REF] Gaillard | Additive models and robust aggregation for gefcom2014 probabilistic electric load and electricity price forecasting[END_REF] where the intermediate quantile Q q0 (y t | x t ) is estimated using a standard quantile regression approach and the GPD parameters θ(x t ) are estimated by a machine learning model aiming at maximizing the GPD likelihood.

Extremal Machine Learning Models

In this section, we present briefly the different EMLMs used in our study to estimate the GPD parameters θ(x t ) of ( 6) based on a well chosen threshold u t (typically based on one of the quantile regression models of Section 2.1). In the following, we let z t = y t -u t .

-The benchmark method, referred to as gpd, provides a constant parameter θ(x t ) = θ which is estimated from the z t 's with the maximum likelihood method of [START_REF] Smith | Estimating tails of probability distributions[END_REF]. -The Extremal Random Forest (erf) of [START_REF] Gnecco | Extremal random forests[END_REF] uses similarity weights obtained by a Generalized Random Forest (GRF, see [START_REF] Athey | Generalized random forests[END_REF]) to fit a conditional GPD.

Trained on the data up to n train , the GRF provides weights w i (x), i = 1, • • • , n train which indicate how relevant the i-th training sample is to estimate conditional intermediate quantiles at x. The GPD parameters θ(x) are obtained by minimizing the following weighted (negative) log-likelihood ntrain i=1 w i (x)ℓ θ (z i ) 1 {zi>0} where ℓ θ is the negative log-likelihood (or deviance) of the GPD. In our experiments we use the penalized version discussed in [START_REF] Gnecco | Extremal random forests[END_REF]Section 3.2] where a penalization is added to the weighted negative log-likelihood to control the variance of the shape parameter ξ of the GPD.

-The Gradient Boosting for Extremes (gbex) of [START_REF] Velthoen | Gradient boosting for extreme quantile regression[END_REF] consists in minimizing the negative log-likelihood of the GPD model using stochastic gradient descent by iterating a tree-based learner in a gradient boosting fashion. -The Generalized Additive Extreme Value Models (evgam) of [START_REF] Youngman | evgam: An r package for generalized additive extreme value models[END_REF] assumes that the GPD parameters follow a GAM equation similarly to [START_REF] Athey | Generalized random forests[END_REF]. -The Extremal Quantile Regression Neural Network (eqrn) of [START_REF] Pasche | Neural Networks for Extreme Quantile Regression with an Application to Forecasting of Flood Risk[END_REF] proposes to model θ(x) with a neural network. In particular, the authors propose to use an LSTM or GRU architecture to take into account the sequential nature of the data. In this case, x t is replaced by (x t-s ) 0≤s≤h in ( 6) and ( 7) and the GPD parameters also depend on the lagged covariates up to lag h.

Adaptive Extremal Machine Learning Models

The methods listed in Section 3.1 rely on the implicit assumption that the data are stationary and therefore provide offline predictions. Although the EQRN method with LSTM or GRU architectures uses lagged covariates as input, it is not an online method since it only targets the quantiles of y t given x t-h , • • • , x t and not given x t and F t-1 . It is the additional information provided by y 1 , • • • , y t-1 which makes the strength of online methods. This motivates the need for online extreme quantile regression models which, to our up-to-date knowledge, have not yet been developed. To address this issue, we identify two approaches. The first one yields a partially adaptive EMLM. It is based on the intuition that the estimation of extreme quantiles using [START_REF] Gaillard | Additive models and robust aggregation for gefcom2014 probabilistic electric load and electricity price forecasting[END_REF] depends strongly on the estimation of the intermediate quantile. Hence, we propose a simple method consisting in replacing Q q0 (y t | x t ) by an online estimator of Q q0 (y t | x t , F t-1 ) as provided in Section 2.2 while still relying on an offline estimation of the GPD parameters.

The second, more involved, approach yields a fully adaptive EMLM based on the assumption that

P (y t -u t > z | y t > u t , x t , F t-1 ) = 1 + ξ t (x t ) σ t (x t ) z -1/ξt(xt) + ,
where θ t (x) = (σ t (x), ξ t (x)) and u t depend on F t-1 . For example, taking

u t = Q q0 (y t | x t , F t-1
), we get the online counterpart of ( 7),

Q q (y t | x t , F t-1 ) = Q q0 (y t | x t , F t-1 ) + σ t (x t ) ξ t (x t ) 1 -q 1 -q 0 1/ξt(xt) -1 .
In this paper, we only consider the first approach and leave the second one for future contributions. We summarize the adaptive EMLM framework in Algorithm 1. This encapsulates all the above approaches as follows.

-Offline EMLM: for all t ≥ 1 we take Qt,q0 = Qq0 and θt = θ which are fixed over time and fitted on a training set using, for example, the methods of Sections 2.1 and 3.1. In this case the adaptation phase of Algorithm 1 has no effect. -Partially adaptive EMLM: for all t ≥ 1, θt = θ fixed over time and fitted on a training set using, for example, the methods of Section 2.1. On the contrary, the update of Qt+1,q0 in Algorithm 1 is done using an adaptive method such as the ones of Section 2.2. -Fully adaptive EMLM (not studied here): Both the estimators Qt,q0 and θt are updated online.

It should be noted that a fully adaptive EMLM can be achieved by simply updating θt+1 in Algorithm 1 with an offline model fitted on the data (x s , y s ) s≤t . This approach is, however, usually too time consuming to be of any practical interest.

Algorithm 1: Adaptive EMLM Input : Data (xt, yt) t≥1 , two quantile levels 0 < q0 < q < 1 and initial estimators Q1,q 0 and θ1 for the intermediate quantile and GPD parameters. 

(xt) | xt, Ft-1)
Deduce an estimate of the extreme quantile Qq(yt | xt, Ft-1) using ( 7) /* Adaptation phase */ Observe yt Update the estimator function Qt+1,q 0 using observations (xs, ys) s≤t Update the estimator function θt+1 using exceedances (ys -Qs,q 0 (xs)) s≤t end

Case study

In this section, we apply the proposed methods on the french daily electricity consumption. We evaluate their performances on the year 2020 to highlight the benefits of adaptive prediction in challenging situations like the COVID-19 crisis, see Figure 1 where we observe an unusual break in the lockdown of March 2020. In the following the target variable y t denotes the daily electrical load at day t and the covariates x t depend on the model used. We split our data in three sets as illustrated in Figure 1. The observations from 2012 to 2017 are used to fit the mean models gam and gkal. For the second model, the set is separated into two subsets : one to fit the gam model and one to fit the covariance parameters of the Kalman on the residuals of the GAM. Then the observations from 2018 and 2019 are used to fit the intermediate and extreme quantile models. Finally the models are evaluated on the year 2020 based on the following metrics. For the mean estimation, we consider the Root Mean Squared Error (RMSE) defined on a test set T as RMSE :=

1 |T | t∈T (y t -ŷt ) 2 .
We evaluate the quantile forecasts based on calibration (also known as reliability) and sharpness (see [START_REF] Gneiting | Model Diagnostics and Forecast Evaluation for Quantiles[END_REF]). Calibration of the q-quantile forecasts (ŷ t,q ) t∈T is assessed by computing the coverage frequency

1 |T | t∈T 1 {yt≤ŷt,q} , (8) 
which, for a calibrated model, should be close to q. Sharpness measures the interval length provided by a probabilistic forecast. Among calibrated models, the one providing the sharpest intervals should be preferred. The pinball loss is known to target both calibration and sharpness and will be used to evaluate our models. To combine the evaluation at multiple quantile levels q 1 , • • • , q K , we use use the Average Calibration Error

ACE := 1 K|T | t∈T K k=1 |1 {yt≤ŷt,q k } -q| ,
and the normalized Ranked Probability Score (nRPS) proposed in [START_REF] Vilmarest | Adaptive probabilistic forecasting of electricity (net-)load[END_REF] as a normalized discrete approximation of the CRPS [START_REF] Gneiting | Strictly proper scoring rules, prediction, and estimation[END_REF].

nRPS := t∈T K k=1 ρ q k (y t , ŷt,q k )(q k+1 -q k-1 )
t∈T |y t -ȳ| , where we let q 0 = 0, q K+1 = 1 and ȳ = 1

|T | t∈T y t .

Estimation of the mean

We compare two models for the estimation of the mean. The first one, referred to as gam, consists in fitting a GAM as explained in Section 2.1 on the whole training set (in green in Figure 1). We use 6 smooth effects and 11 linear effects in the GAM equation [START_REF] Athey | Generalized random forests[END_REF]. The formula is

ŷt = f 1 (t) + f 2 (toy t ) + f 3 (T emp t ) + f 4 (T emp95 t ) + f 5 (y t-1 ) + f 6 (y t-7 ) + 7 i=1 α i 1 {W Dt=i} + β 1 BH t + β 2 CB t + β 3 SB t + β 4 P t , (9) 
where toy denotes the normalized time of year from 0 (January 1st) to 1 (December 31st), T emp and T emp95 are the average daily temperature and its exponential smoothing variant with parameter 0.95, W D indicates the day of the week from 1 to 7, BH, CB and SB are a boolean indicating bank holidays, Christmas break and Summer break and finally P is a boolean equal to 1 if it is a Monday before a bank holiday or a Friday after a bank holiday (it takes into account possible 4 days weekends).

The second model considered is an adaptive GAM with Kalman updates as explained in Section 2.2 and referred to as gkal. We first fit a GAM model on the years 2012 to 2015 using the formula (9) and then estimate diagonal covariances for the Kalman state space model with the grid search method using the residuals of the GAM on the years 2016 and 2017 (see Figure 1). Figure 2 shows the 14 days moving average bias of the two models and clearly illustrates the benefits of the Kalman adaptation, especially during the COVID crisis. The RMSE of gam goes from 856 in 2019 to 1926 in 2020 while gkal has much more stable scores with RMSE of 738 in 2019 and 812 in 2020. 

Estimation of intermediate quantiles

We estimate intermediate quantiles at levels 0.05, 0.1, • • • , 0.95 using the different methods introduced in Section 2.2 and summarized in Table 1. Figure 3 represents the coverage (8) at all quantile levels in the form of reliability diagrams. The online methods are clearly more calibrated than the offline ones since their reliability diagrams are much closer to the diagonal. It seems that better results are obtained with the methods based on gkal as confirmed by the scores of Table 2. This means that, for our case study, the adaptation of the mean forecast has the most impact on the performance of the quantile forecasts. Overall, the combination of an adaptive mean and non-linear quantile regression (gkal.qgam) gives the best results.

Estimation of extreme quantiles

Extreme quantiles forecasts are evaluated for both low and high quantiles. For high quantiles, we take the quantile forecasts at level q 0 = 0.8 provided by the methods of Section 4.2 as the intermediate threshold. Then we fit the EMLMs of Section 3.1 on the exceedances over the intermediate threshold on the training Name Description qgam Fits smooth and linear effects using the same covariates as [START_REF] Gnecco | Extremal random forests[END_REF] to model the conditional quantile instead of the mean.

gam.th

Theoretical quantiles from a normal distribution on the residuals of gam. gam.qr Linear quantile regression on the residuals of gam using the effects of gam. gam.qgam Similar to qgam but the target are the residuals of gam. The equation uses only smooth effects on toy, T emp and T emp95 and linear effects on 1 {W D t =i} for i = 1, • • • 7. gam.ogd Same framework as in gam.qr but the coefficients of the linear quantile regression are updated online with gradient descent. We get 9 forecasts, one for each of the gradients steps 10 -8 , 10 -7 , • • • , 1 and we aggregate them online (using BOA) to compute the final forecast. gkal.th Theoretical quantiles from the posterior normal distribution of gkal. gkal.qr Linear quantile regression on the residuals of gkal using the effects of gam. gkal.qgam Same as gam.qgam but on the residuals of gkal. gkal.ogd Same as gam.ogd but on the residuals of gkal. set (years 2018 and 2019). We then compute the quantiles at extreme levels 0.99, 0.995 and 0.999 using [START_REF] Gaillard | Additive models and robust aggregation for gefcom2014 probabilistic electric load and electricity price forecasting[END_REF]. For low quantiles, we take the quantile forecasts at level q 0 = 0.2 as intermediate threshold and compute the quantiles at extreme levels 0.001, 0.005 and 0.01. To do so, it suffices to apply the same method as for high quantiles taking the opposite of the observations and intermediate quantile.

The number of training samples, i.e. observations above (for high quantiles) or below (for low quantiles) the intermediate threshold represent between 119 and 144 samples, depending on the intermediate quantile method used. Due to the low number of training samples, we don't add categorical variables such as W D to the covariates. For all methods, we only consider the two covariates toy and T emp. For each extreme quantile level, we also compare the EMLM estimates with the base estimate using the same model as the intermediate level.

An essential step in EMLMs is parameters selection. First, we make sure that the EMLMs yield constant shape ξ in the estimated GPD. For evgam and eqrn, this can be directly imposed in the R implementation of the models. For the gbex method, it suffices to set the depth of trees for the shape parameter to 0. For the erf method, we take a large shape penalty, here 1. To select the other parameters of the EMLMs, we use a 5-fold cross validation repeated 3 times and consider the GPD deviance (i.e. negative log-likelihood) as validation metric.

For erf, The number of trees and the minimal node size of the erf are selected among {100, 500, 1000} and {1, 3, 5, 10, 20, • • • , 140} respectively. For gbex, the depth of tree of the scale parameter σ is selected from 1 to 3 and the number of trees from 1 to 500. For eqrn, we consider 3 layers of GRU with size 256 and select the loss penalty among {0, 10 -6 , 10 -5 , 10 -4 , 10 -3 }. The maximum lag h (discussed in Section 3.1) for the input of eqrn is set to 1.

To evaluate the low and high quantile regression the ACE and nRPS metrics are not well suited as they put little weight to extreme levels. Instead, we use the individual coverages [START_REF] Gilbert | Probabilistic load forecasting for the low voltage network: Forecast fusion and daily peaks[END_REF] and pinball losses gathered in Table 3. For low quantiles, we again observe that the online models outperform the offline models. We also almost always get better results by using an EMLM instead of the base model, especially at very low levels. The difference between the EMLMs is less striking. This may be explained by the small number of covariates used. An interesting observation is that the base variant of the gkal.qgam method also provides good results thus illustrating the effectiveness of QGAM even at extreme levels. For high quantiles, the results are more nuanced. A possible explaination is the fact that, during the COVID crisis the downward shift in electrical load makes the prediction of high quantiles particularly challenging. We also see the limitation of the calibration evaluation with [START_REF] Gilbert | Probabilistic load forecasting for the low voltage network: Forecast fusion and daily peaks[END_REF] as, in our test data consisting of 366 samples, the best coverage are 0% and 100% for very low and very high levels respectively.

Conclusion

In this work, we propose a new method for online extreme quantiles forecasting by combining recent advances in online adaptive probabilistic forecasting methods and EMLMs for GPD estimation. Our study case illustrates the advantage of considering an adaptive quantile estimate as the intermediate threshold used in EMLMs during unstable periods like the COVID crisis. Our method is based on the implicit assumption that the GPD parameters do not need online adaptation. An interesting research topic, which we leave for future work, is to provide use cases where this assumption fails and derive fully adaptive EMLMs where the GPD parameters are also adapted online. 

Fig. 1 :

 1 Fig. 1: Daily electricity load and 14 days moving average.

Fig. 2 :

 2 Fig. 2: 15 days moving average bias of the mean forecasts. Shaded areas correspond to the two lockdowns.

Fig. 3 :

 3 Fig. 3: Reliability diagrams for the intermediate quantile forecasts in 2020

  Estimate the intermediate quantile Qq 0 (yt | xt, Ft-1) by Qt,q 0 (xt) Estimate the parameters θt(xt) of the GPD for L(yt -Qt,q 0

	for t ≥ 1 do	
	/* Prediction phase	*/
	Observe xt	

Table 1 :

 1 Summary of intermediate quantile regression methods. gkal.ogd gkal.qgam gkal.qr gkal.th gam.ogd gam.qgam gam.qr gam.th qgam

	ACE	0.03	0.02	0.04	0.03	0.043	0.3	0.22	0.3 0.19
	nRPS 0.048	0.047	0.048	0.049	0.07	0.12	0.10	0.13 0.09
	20%	218	213	217	226	325	695	576	719 484
	50%	279	272	279	274	372	644	559	718 515
	80%	204	194	207	208	267	357	325	408 326

Table 2 :

 2 ACE, nRPS and pinball loss at levels 0.2, 0.5, 0.8 for the intermediate quantile forecasts in 2020. In bold : best per row.

Table 3 :

 3 LevelCoverage (%) Pinball loss base eqrn erf evgam gbex gpd base eqrn erf evgam gbex gpd 0.1% gkal.ogd 1.37 0 0 1.09 0.82 0.[START_REF] Wood | Generalized additive models: an introduction with R[END_REF] 13.3 5.87 3.53 9.74 5.19 3.60 gkal.qgam 0 0.27 0 0 0.27 0 3.72 4.33 4.18 3.31 4.82 4.19 gkal.qr 3.01 0.27 0.27 1.09 0.55 0.55 16.6 4.36 3.74 8.04 5.01 3.97 gkal.th 1.64 0.27 0.27 0.82 0.82 0.27 17 4.77 4.03 6.96 5.80 4.04 gam.ogd 3.28 0 3.83 4.37 3.28 3.83 46.1 9.92 67.6 65.6 58.3 77.2 gam.qgam 8.20 0 10.7 19.1 14.5 9.29 98.3 6.39 108 243 129 113 gam.qr 33.1 5.74 13.1 12.8 12.3 12.3 416 58.5 164 164 141 179 gam.th 14.7 0 7.92 35 9.02 9.84 229 4.98 86.03 402 121 124 qgam 1.09 4.64 7.38 14.5 8.47 4.37 5.98 45.4 65.9 147 79.8 48.1 0.5% gkal.ogd 1.37 0.55 1.37 1.37 1.37 1.37 21.3 16.8 17.6 24.2 22.1 22.3 gkal.qgam 0.82 0.82 0.82 1.09 1.37 1.37 15.9 18 15.1 18.4 19.6 20.4 gkal.qr 3.01 1.64 1.37 1.37 1.37 1.37 23.3 20.7 21.1 23.5 22.3 22.9 gkal.th 3.01 1.09 1.09 1.37 1.09 1.37 31.6 20.3 21.3 23.4 22 23.1 gam.ogd 3.83 0 5.19 5.19 4.64 5.19 61.9 20.4 96.9 94.1 91.6 104 gam.qgam 19.1 4.92 19.1 27 22.7 16.4 241 50.7 239 316 267 237 gam.qr 33.1 13.1 15.8 16.1 15.8 15.8 418 156 234 233 229 246 gam.th 19.1 3.28 18.8 35.2 19.7 14.7 300 24.8 192 410 237 236 qgam 9.02 7.92 15.6 18.8 14.5 8.47 99.1 120 163 196 171 123 1% gkal.ogd 1.37 1.64 1.91 2.73 2.46 2.73 30.1 30.5 32 37.1 35 37.1 gkal.qgam 1.09 2.19 1.91 2.73 2.46 1.91 26.6 32.5 30.5 32.4 31.8 35.2 gkal.qr 1.37 2.46 2.46 2.46 2.46 2.73 30.1 36.3 35.9 36.3 35.4 37.6 gkal.th 3.28 1.64 1.64 2.46 2.73 2.19 44 34.9 35 36.7 36.1 37.8 gam.ogd 3.55 2.73 6.01 6.28 5.74 6.01 86.1 47.5 116 113 113 123 gam.qgam 26.5 12.3 23.8 29.5 28.4 22.4 306 144 309 362 338 307 gam.qr 32.8 18.8 19.1 19.7 19.4 18.8 414 219 273 274 277 285 gam.th 23.2 9.56 22.4 35.8 25.1 19.1 344 95.4 268 419 306 296 qgam 13.9 13.9 17.5 21 17.5 13.7 161 168 211 227 216 172 99% gkal.ogd 98.6 99.2 99.2 99.2 98.9 99.2 24 22 24.5 23.3 22.7 20.9 gkal.qgam 99.2 100 98.6 99.4 98.4 99.7 30.2 24.3 38.7 27.5 29.7 28 gkal.qr 98.4 99.4 99.2 99.4 98.4 99.4 24 24.2 27.3 23.9 24.8 21.2 gkal.th 96.7 100 99.4 100 99.2 100 23.6 35.6 35.2 26.9 26.4 27.4 gam.ogd 99.7 99.7 99.2 98.4 98.6 99.7 26.3 27.4 28.9 26.5 27.8 23.5 gam.qgam 100 100 99.4 100 99.4 100 34.4 35.7 33.6 29.9 30.9 33.5 gam.qr 99.7 100 99.7 99.2 99.2 100 26.3 28 28.4 27.5 27.9 27.4 gam.th 100 100 100 100 100 100 31.2 42.3 35.1 36.2 36.9 36.3 qgam 100 99.7 99.7 99.7 99.7 99.7 36 32.7 36 30.6 32.9 31.2 99.5% gkal.ogd 97 99.2 99.4 99.4 99.4 100 21 12.6 15.3 14.3 13.5 12.3 gkal.qgam 99.7 100 99.2 100 99.2 100 17.4 15.2 25.1 17.2 18.2 17.9 gkal.qr 95.1 100 99.4 99.4 99.2 100 28.2 15.6 17.3 14.9 14.2 13.5 gkal.th 98.9 100 99.4 100 99.4 100 13.2 26.1 22.5 17.3 15.3 18.1 gam.ogd 100 100 99.2 98.91 99.2 100 13.9 16.5 17.7 15.7 17.1 13.3 gam.qgam 100 100 100 100 99.7 100 19.3 20.5 18.4 15.6 17 18.5 gam.qr 100 100 99.7 99.2 99.7 100 13.9 15.9 15.9 15.3 15.7 15.2 gam.th 100 100 100 100 100 100 16.6 24.5 18.7 19.3 20.5 19.4 qgam 100 99.7 99.7 99.7 99.7 100 20.9 19 22.8 17.9 20 18.8 99.9% gkal.ogd 97.8 100 100 100 100 100 11.1 2.98 4.12 3.43 3.24 4.02 gkal.qgam 100 100 100 100 100 100 4.92 4.79 7.93 6.71 4.38 7.17 gkal.qr 95.1 100 100 100 100 100 22.1 6.05 5.07 3.68 3.28 4.72 gkal.th 99.2 100 100 100 100 100 3.05 12.58 7.59 5.90 4.38 6.58 gam.ogd 100 100 99.2 99.2 99.2 100 2.78 4.98 5.24 6.15 5.92 3.42 gam.qgam 100 100 100 100 100 100 5.76 5.48 4.46 3.32 4 4.49 gam.qr 100 100 99.7 99.2 99.7 100 2.78 4.14 3.71 4.66 4.11 3.70 gam.th 100 100 100 100 100 100 3.74 6.74 4.12 4.26 5.07 4.30 qgam 100 100 100 99.7 100 100 6.52 4.59 7.32 4.83 6.10 6.49 Scores for extreme quantile regression. In bold : best score per line, underlined : best score.
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