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Abstract

Consider a time horizon and a set of possible states for a given system. The system must be
in exactly one state at a time. In this paper, we generalize classical results on min-up/min-down
constraints for a 2-state system to an n-state system. The minimum-time constraints enforce
that if the system switches to state i at time t, then it must remain in state i for a minimum
number of time steps. The minimum-time polytope is defined as the convex hull of integer
solutions satisfying the minimum-time constraints. A variant of minimum-time constraints is
also considered, namely the no-spike constraints. They enforce that if state i is switched on at
time t, the system must remain on states j ≥ i during a minimum time. Symmetrically, they
enforce that if state i is switched off at time t, the system must remain on states j < i during
a minimum time. The no-spike polytope is defined as the convex hull of integer solutions
satisfying the no-spike constraints. For both the minimum-time polytope and the no-spike
polytope, we introduce families of valid inequalities. We prove that these inequalities lead to a
complete description of linear size for each polytope.

Consider a time horizon T = {1, ..., T} and a set of possible states N = {0, ..., n} for a given
system. The system must be in exactly one state at a time. We introduce minimum-time constraints
as follows. If the system switches to state i ∈ N at time t, then it must remain in state i for at
least Li time steps. The minimum-time polytope is defined as the convex hull of integer solutions
satisfying the minimum-time constraints. These constraints directly generalize minimum up and
down time constraints from the literature [11, 18] in the sense that the system has an arbitrary
number n of possible states, instead of only two states (up and down).

A variant of minimum-time constraints is also considered, namely the no-spike constraints. The
no-up-spike constraints enforce that if state i ∈ N is switched on at time t ∈ T , the system must
remain on states j ≥ i during at least Li time steps. This forbids to switch down the states of the
system too rapidly after having switched them up. Symmetrically, the no-down-spike constraints
enforce that if state i ∈ N is switched off at time t ∈ T , the system must remain on states j < i
during at least `i time steps. This forbids to switch up the states of the system too rapidly after
having switched them down. The no-spike polytope is defined as the convex hull of integer solutions
satisfying the no-spike constraints.

To illustrate, Figure 1 displays an example solution for a 4-state system on 7 time steps satisfying
minimum-times Li = 3, i ∈ N , and Figure 2 displays an example solution for a 4-state system on
10 time steps satisfying no-spike constraints with Li = `i = 3, i ∈ N .
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Figure 1: Example of a solution for a system
subject to minimum-time constraints
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Figure 2: Example of a solution for a system
subject to no-spike constraints

Minimum-time and no-spike constraints are of particular interest, because they appear in practi-
cal Unit Commitment Problems, typically when production units feature discrete operating states.
Minimum-time constraints are very often involved for combined-cycle units, which feature various
operating modes, and minimum up and down times on each mode [5, 6, 13]. Moreover, in the French
electrical system [8], nuclear units are modeled with discrete production levels and minimum-time
constraints, and hydro-electric units are modeled with discrete production levels, and no-spike
constraints.

Minimum-time constraints on multiple-state systems also very classical in mixed-integer optimal
control problems [1, 9, 3], where optimal policies usually have to avoid very short successive changes.
In this context as well, tight MILP formulations for such discrete constraints can prove useful,
specifically in decomposed resolution schemes [20].

Related work For a system with only 2 possibles states (up and down, or equivalently 0 and
1), minimum-time constraints and no-spike constraints simplify to min-up/min-down constraints.
A complete description of the min-up/min-down polytope is given in [11], in the space of binary
variables x indicating on/off status. This description involves an exponential number of inequalities.

The authors of [18] define binary variables u indicating a switch from state 0 to state 1. They in-
troduce turn-on/turn-off inequalities, a polynomial family of inequalities enforcing the min-up/min-
down constraints. They prove that along with trivial inequalities, they provide a complete descrip-
tion of the minimum-time polytope in the variable space (x, u). Similar results have been proven
independently in [12].

Polytopes associated to couplings of minimum-time constraints with other constraints have also
been studied. In [17], the authors propose, for a two-state system, a polyhedral description of the
minimum-time constraints coupled to maximum time constraints, enforcing that each state does
not remain activated for too long after being switched on. In [2, 19] is proposed a polyhedral study
of the coupling between min-up/min-down constraints and knapsack constraints. In [4], the authors
propose tight formulations for minimum-time constraints coupled to particular ramping constraints
enforcing that transitions are allowed only between consecutive states.

In the context of the Unit Commitment Problem where production units feature continuous
production variables, multiple studies propose tight formulations for the coupling between min-
up/min-down constraints and production ramping constraints enforcing limited power variations
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for consecutive time steps [7, 14, 10, 15, 16].

In this paper, we generalize classical results on min-up/min-down constraints for a 2-state system
to an n-state system. To this aim, we introduce two new polytopes: the minimum-time polytope
and the no-spike polytope. For each polytope, we introduce families of valid inequalities. We prove
that these inequalities lead to a complete description of linear size for each polytope.

In Section 1, a formulation for the minimum-time constraints is given, using on/off binary vari-
ables x and switch binary variables u. This formulation involves exclusion constraints on variables
x, enforcing that exactly one state is used at each time step. In that sense, binary variables x can be
seen as multiple-choice variables. The formulation also involves extension of turn/on-off inequalities
from [18] to n-state systems. The minimum-time polytope is defined in the (x, u) variable space. We
introduce a linear-size family of valid inequalities providing a strengthened upper-bound on switch
variables u. We prove that the minimum-time polytope can be completely described using these
inequalities along with formulation inequalities. In Section 2, a formulation of no-spike constraints
is given, also using on/off binary variables x and switch binary variables u. Exclusion constraints
are replaced with order constraints on variables x. Therefore, variables x can be seen here as in-
cremental variables, leading to an incremental formulation instead of a multiple choice one. We
show that the extension of turn/on-off inequalities from [18] involving incremental variables enables
to enforce no-spike constraints. The no-spike polytope is accordingly defined in variables space
(x, u). Two linear-size families of valid inequalities are introduced: generalized order inequalities
and generalized turn-on/off inequalities. We prove that the no-spike polytope can be completely
described using these inequalities along with formulation inequalities.

1 The Minimum-Time polytope

In this section, we consider an n-state system with minimum times Li on each state i of the system.
Using multiple choice variables xit indicating that the system is in state i at time t, the following

exclusion constraint holds: ∑
i∈N

xit = 1 ∀t ∈ T (1)

Additional binary variables u are used to indicate the fact that a state has been switched on at
a given time step. Thus, variable uit indicates that state i has been switched on at time t:

uit ≥ xit − xit−1 ∀t ∈ {2, ..., T}, ∀i ∈ N (2a)

uit ≤ xit ∀t ∈ T , ∀i ∈ N (2b)

uit ≤ 1− xit−1 ∀t ∈ {2, ..., T}, ∀i ∈ N (2c)

Extending to the n-state case the turn-on constraints introduced for a two-state system in [18],
minimum-time constraints can be written as extended turn-on inequalities:

t∑
t′=t−Li+1

uit′ ≤ xit ∀t ∈ {Li + 1, ..., T} ∀i ∈ N (3)

The minimum-time polytope is defined as follows:

PMT = conv

{
(x, u) ∈ {0, 1}(n×T )×(n×T−1) | (1), (2a), (2b), (2c), (3)

}
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In the following, we introduce a linear-size family of valid inequalities arising from the cou-
pling between (1) and (3). We show that along inequalities (1), (2a), (2b), (2c), (3), this set of
inequalities gives a complete linear description of PMT .

1.1 Strengthened Upper Bound (SUB) inequalities

We introduce the Strengthened Upper Bound (SUB) inequalities as follows.

uit ≤ xit − xit−1 +
∑
j 6=i

ujt ∀i ∈ N , ∀t ∈ T (4)

The following lemma shows that these inequalities define a valid upper bound for variables uit,
coupling all states j together.

Proposition 1. Strengthened Upper Bound inequalities (4) are valid for PMT .

Proof. If xit − xit−1 = 1 then uit = 1 by (2a) therefore (SUB) is valid. Similarly, if xit − xit−1 = 0
then uit = 0 by (2b) and (2c) therefore (SUB) is valid.

If xit−xit−1 = −1, it means that state i has been deactivated at time t: by (16), another state j

should have been switched on at time t, thus
∑

j 6=i u
j
t = 1 which proves the validity of (SUB).

1.2 Complete polyhedral description of the minimum-time polytope

In order to prove that strengthened upper bound inequalities, along with turn-on/turn-off inequal-
ities, give a complete linear description of PMT , we introduce a few definitions.

Definition 1. Let polytope Qn,T be defined by inequalities (1) (2a) (2b) (2c), turn-on (3) and
strengthened upper bound inequalities (4).

Qn,T =

{
(x, u) ∈ [0, 1]2n(T−1) | (1), (2a), (2b), (2c), (3), (4)

}
Let {as, s ∈ S} be a set of integral points of Qn,T . We introduce the following notations.
We denote by xit(as) (resp. uit(as) ) the coordinate xit (resp. uit) of point as.
We introduce set Si

t ⊆ S containing points of S such that state i is on from time t− Li + 1 to
time t, for all i ∈ N and t ∈ T .

Si
t =

{
s ∈ S | xit(as) = 1,

t∑
t′=t−Li+1

uit(as) = 0

}

Subset Si
t contains the points as such that state i is ready to be deactivated at t+ 1 (i.e, minimum-

time constraints would indeed be satisfied if i were deactivated at t+ 1).

We also introduce set S
i

t ⊆ S containing points of S such that state i is off at time t, for all
i ∈ N and t ∈ T , and no other state j is switched on on interval [t− Lj + 1, t]:

S
i

t =

{
s ∈ S | xit(as) = 0,

t∑
t′=t−Lj+1

ujt (as) = 0, ∀j ∈ N
}
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Subset S
i

t contains the points as such that state i is ready to be activated at t+ 1 (i.e, min-up time
constraints would be satisfied for other states j if i were activated at t+ 1).

We introduce set Si,u
t ⊆ S containing points of S such that state i is switched on at time t, for

all i ∈ N and t ∈ T .

Si,u
t =

{
s ∈ S | uit(as) = 1

}
Finally, for a given point (x, u) we use the notation w to denote the following values:

wi
t = xit−1 − xit + uit (5)

Note that wi
t = 1 would correspond to switching off state i at time t.

Now we prove three useful lemmas to show that Qn,T is integral.

Lemma 1. For any point (x, u) in Qn,T , the following equality holds:

n∑
i=0

wi
t =

n∑
i=0

uit (6)

Proof. We have
∑n

i=0 x
i
t−1 − xit + uit = 1− 1 +

∑n
i=0 u

i
t from inequality (16).

Lemma 2. For any point (x, u) in Qn,T , the following inequality holds:∑
i 6=j

wi
t ≥ u

j
t ∀j ∈ N . (7)

Proof. By (5),
∑

i6=j w
i
t =

∑
i6=j(u

i
t + xit−1 − xit). Then applying (16) for t and t − 1, we obtain∑

i 6=j w
i
t = xjt − x

j
t−1 +

∑
i 6=j u

i
t. By (SBU) inequality (4), we obtain the result.

For a point (x, u) in Qn,T , consider oriented graph Gx,u = (V,A), where V = {s} ∪ {p} ∪
{W i, U i, ∀i ∈ N} and A = {(s,W i) ∀i} ∪ {(W i, U j), ∀i 6= j} ∪ {(U i, p) ∀i}.

Figure 3 shows the form of graph G for a 4-state system. For each i ∈ N , arc (s,W i) has
capacity wi

T and arc (U i, t) has capacity uiT .

Lemma 3. Consider a point (x, u) in Qn,T . Let Q =
∑

i∈N w
i
T . There exists an s–p flow of value

Q in graph Gx,u.

Proof. Suppose the maximum s–p flow were of value Q′ < Q. Then it would mean that at least
one arc (s,W j) is not saturated for a given j. As Q =

∑
i∈N u

i
T by Lemma 4, some arcs (U i, t) are

not saturated either. If arc (U i, p), with i 6= j is not saturated, then the flow can be increased on
arcs (s,W j) and (W j , U i), therefore Q′ would not be a maximum flow. Thus, among arcs (U i, t),
i ∈ N , only arc (U j , p) is not saturated. Thus, for a given postitive flow f on an arc (W i, U i′), with
i 6= j, i′ 6= j, flow f can be (at least partly) re-oriented to arc (W i, U j). Therefore, arc (U i′ , p)
would not be saturated anymore, and we could increase the flow on arcs (s,W j), (W j , U i′), and
(U i′ , p). This leads to a contradiction.

Theorem 1. Polytope Qn,T is integral.
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Figure 3: Example of a graph Gx,u with n = 4

Proof. We prove the following result by induction on T : for any point (x, u) of Qn,T , there exists a
set {as, s ∈ S} of integral points as ∈ Qn,T such that (x, u) can be written as a convex combination
of points as, such that: (x, u) =

∑
s∈S λsas where

∑
s∈S λs = 1.

For T = 1, the result trivially holds as variables u are non-zero only when T ≥ 2.
Suppose the result is true for T −1. We first prove (i) for T . Consider a point (x, u) of Qn,T . By

induction hypothesis, the restriction (x, u)T−1 of (x, u) to the first T−1 time steps can be written as
a convex combination of integral points as ∈ Qn,T−1, s ∈ S such that (x, u)T−1 =

∑
s∈S λsas where∑

s∈S λs = 1. We will show that each point as can be extended to time step T so that for each as
we obtain several points bps = (as, (x

p
s,T , u

p
s,T )) ∈ Qn,T satisfying: (x, u) =

∑
s∈S

∑
p∈Ps

λpsb
p
s where∑

p∈Ps
λps = λs.

For each state i, a fraction uiT of state i is activated at time T . In this case, a fraction uiT of

integral points as, s ∈ ∪j 6=iS
j
T−1 must be extended so that state i is activated at time T (i.e.,

extended so that the resulting points satisfy xiT−1 = 0 and xiT = 1). The quantity of eligible of
points in S is

Qi
u =

∑
s∈∪j 6=iS

j
T−1

λs =
∑
s∈Si

t

λs = 1− xiT−1 −
∑
j 6=i

T−1∑
t=T−Lj+1

∑
s∈Su

j,t

λs = 1− xiT−1 −
∑
j 6=i

T−1∑
t=T−Lj+1

ujt

by induction hypothesis. By inequality (3), and then (16):

Qi
u ≥ 1− xiT−1 +

∑
j 6=i

(ujT − x
j
T ) ≥ 1−

∑
j 6=i

xjT − x
i
T−1 +

∑
j 6=i

ujT = xiT − xiT−1 +
∑
j 6=i

ujT

Finally, by (4), we obtain: Qi
u ≥ uiT .
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Moreover, a fraction wi
T of state i is deactivated at time T . In this case, a fraction of integral

points as, s ∈ Si
T−1 must be extended so that state i is switched off at time T (i.e., extended so

that the resulting points satisfy xiT = 0). The quantity of eligible points is

Qi
w =

∑
s∈Si

T−1

λs = xiT−1 −
T−1∑

t=T−Li+1

uit ≥ xiT−1 − xiT + uiT

by induction hypothesis and inequality (3). Finally, using (5) we obtain Qi
w ≥ wi

T .
We have shown that for each state i, there is a sufficient fraction Qi

u ≥ uiT (resp. Qi
w ≥ wi

T )
of points ready to activate (resp. deactivate) state i. It remains to decide how each point as will
be extended. To do this, we argue that an extended solution can be obtained from a flow in graph
Gx,u

2 The No-Spike polytope

In this section, we consider a system subject to no-spike constraints instead of minimum-time
constraints. To formulate these constraints, exclusion constraints (1) are replaced with the following
order constraints:

x0t = 1 and xit ≤ xi−1t ∀t ∈ T , ∀i ∈ {1, ..., n} (8)

In this case, variables x take on a new meaning: xit = 1 if there is a state j ≥ i such that all
states from 1 to j are on at time t. The states of the system are then modeled as incremental, in
the sense that if state i is on at time t, then all states k < i must also be on at time t.

Note that when featuring incremental variables x, the extended turn-on inequalities (3) take
another meaning. Specifically, they enforce that when state i is switched on, the system must
remain on states j ≥ i during Li time steps. Therefore, in this incremental state context, the
min-up constraints (3) exactly enforce no-up-spike constraints.

We can similarly formulate no-down-spike constraints as extended turn-off inequalities:

t∑
t′=t−`i+1

uit′ ≤ 1− xit−`i (9)

These inequalities enforce that when state i is switched off, then the system must remain on states
j < i during `i time steps.

We study the resulting no-spike polytope PNS with symmetric min-up/min-down times Li =
`i = L, for each i ∈ N .

PNS = conv

{
(x, u) ∈ {0, 1}(n×T )×(n×T−1) | (2a), (2b), (2c), (3), (8), (9)

}
In the following sections, we introduce several families of valid inequalities for PNS . We then

prove that these inequalities, along with formulation inequalities, yield a complete description of
the minimum-time polytope.
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2.1 Valid inequalities

In this section, we introduce two linear-size families of valid inequalities for PNS , one that gener-
alizes (8) using u variables, and another that captures the coupling between (3) (resp. (9)) and
(8).

Definition 2 (Generalized order inequalities). For i ∈ {1, ...n− 1}, t ∈ {1, ..., T − 1} :

xi+1
t + ui+1

t+1 ≤ xit + uit+1 (10)

xi+1
t + uit ≤ xit + ui+1

t (11)

Proposition 2. Generalized order inequalities (10) (11) are valid for PNS.

Proof. Note that by constraint (8), xit − xi+1
t ≥ 0. If xit − xi+1

t = 1, then both inequality are valid.
Otherwise, if xit − xi+1

t = 0, it means that states i and i + 1 are either both activated or both
deactivated at time t.

We first prove the validity of (10) in the case where xit − xi+1
t = 0. If ui+1

t+1 = 1, meaning that
state i+ 1 is switched on at time t+ 1, then state i is also switched on at time t+ 1, so uit+1 = 1.

Now we prove the validity of (11) in the case where xit − xi+1
t = 0. If uit = 1, meaning that

state i is switched on at time t, then state i+ 1 is also switched on at time t, as xit−xi+1
t = 0, thus

ui+1
t = 1.

Now we introduce inequalities generalizing no-up-spike (3) and no-down-spike (9) constraints.
Note that by convention, xn+1

t = 0, un+1
t = 0 and x0t = 1, u0t = 0, for all t ∈ T .

Definition 3 (Generalized turn-on inequalities). For i ∈ {1, ...n}, t ∈ {L + 1, ..., T} and k ∈
{1, ..., L− 1}:

t∑
t′=t−k

uit′ ≤ xit +

t∑
t′=t−k

ui+1
t′ − x

i+1
t (12)

Proposition 3. Generalized turn-on inequalities (12) are valid for PNS.

Proof. Note that by constraint (8), xit − xi+1
t ≥ 0. If xit − xi+1

t = 1, then the inequality is valid:
indeed,

∑t
t′=t−k u

i
t′ ≤ 1 otherwise the minimum-time constraint would not be satisfied. We now

consider the case where xit − xi+1
t = 0, meaning that states i and i+ 1 are either both activated or

both deactivated at time t. If
∑t

t′=t−k u
i
t′ = 0 then the inequality is trivially valid. Otherwhise,

if
∑t

t′=t−k u
i
t′ = 1, it means that state i has been switched on at some time t′ ∈ [t − k, t]. Since

k ≤ L − 1, by the minimum-time constraint, state i is still activated at time t. As xit − xi+1
t = 0,

state i + 1 is therefore also activated at time t. As state i was not activated at time t′ − 1, state
i + 1 was not activated neither at time t′ − 1. Therefore, there exists a time t′′ ∈ [t′, t] at which
state i+ 1 has been activated. Thus,

∑t
t′=t−k u

i+1
t′ = 1.

Proposition 4. Generalized turn-on inequalities dominate turn-on inequalities.
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Proof. For k = L− 1, the generalized turn-on inequality has the form:

t∑
t′=t−L+1

uit′ ≤ xit +

t∑
t′=t−L+1

ui+1
t′ − x

i+1
t

It corresponds to the turn-on inequality for state i, with the addition of
∑t

t′=t−L+1 u
i+1
t′ − x

i+1
t

to the right hand side. Note that
∑t

t′=t−L+1 u
i+1
t′ − x

i+1
t ≤ 0 by the turn-on inequality for state

i+ 1. Therefore, the generalized turn-on inequality dominates the turn-on inequality, for each state
i ∈ N .

Definition 4 (Generalized turn-off inequalities). For i ∈ {1, ...n}, t ∈ {L + 1, ..., T} and k ∈
{1, ..., L− 1}:

xit−L +

t∑
t′=t−k

uit′ ≤ xi−1t−L +

t∑
t′=t−k

ui−1t′ (13)

Proposition 5. Generalized turn-off inequalities (13) are valid for PNS.

Proof. The proof follows the same pattern as the proof of Proposition 3.

Proposition 6. Generalized turn-off inequalities dominate turn-off inequalities.

Proof. The proof follows the same pattern as the proof of Proposition 4.

Definition 5. Let polytope QNS
n,T be defined by generalized turn-on inequalities (12), generalized

turn-off inequalities (13), generalized order inequalities (10) (11) along with order inequalities (8)
and inequalities (2a) (2b) (2c):

QNS
n,T =

{
(x, u) ∈ [0, 1]2n(T−1) | (2a)(2b)(2c)(8)(10)(11)(12)(13)

}

2.2 Complete polyhedral description of the no-spike polytope

In this section, we prove that polytope QNS
n,T is integral, therefore inequalities (2a) (2b) (2c) (8)

(10) (11) (12) (13) give a complete linear description of the no-spike polytope PNS .
In order to prove the integrality of QNS

n,T , we first apply a bijective transformation: we obtain a

new polytope Q̃NS
n,T , which we prove to be integral.

2.2.1 Linear bijective transformation of QNS
n,T

We consider linear bijection φ transforming variables (x, u) to variables (x̃, ũ, w̃) as follows :

φ : (x, u)→ (x̃, ũ, w̃)

where for each i ∈ {0, ..., n} and t ∈ T ,

x̃it = xit − xi+1
t

ũit = uit − ui+1
t

w̃i
t = wi

t − wi+1
t

(14)
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and
wi

t = uit + xi−1t − xit
Note that x̃it ≥ 0 by order constraints, but ũit ∈ [−1, 1].
Inverse bijection φ−1 can be defined as follows:

φ−1 : (x̃, ũ, w̃)→ (x, u)

where ∑n
j=i x̃

i
t = xit∑n

j=i ũ
i
t = uit∑n

j=i w̃
i
t = wi

t

(15)

We can easily prove the following lemmas.

Lemma 4. For (x, u) ∈ QNS
n,T and (x̃, ũ, w̃) satisfying (14),

w̃i
t = ũit + x̃i−1t − xit

Lemma 5. With bijection φ, generalized order inequalities (10) and (11) rewrite

−x̃it−1 ≤ ũit ≤ x̃it

Lemma 6. With bijection φ, for i ∈ {1, ...n}, t ∈ {L+ 1, ..., T} and k ∈ {1, ..., L− 1}, generalized
turn-on inequalities rewrite

t∑
t′=t−k

ũit′ ≤ x̃it

Lemma 7. With bijection φ, for i ∈ {1, ...n}, t ∈ {L+ 1, ..., T} and k ∈ {1, ..., L− 1}, generalized
turn-off inequalities rewrite

x̃it−k−1 +

t∑
t′=t−k

ũit′ ≥ 0

Bijection φ transforms the incremental formulation with variables (x, u) into a multiple choice
formulation with variables (x̃, ũ, w̃). Indeed, we prove that along bijection φ, polytope Qord

n,T is
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transformed to Q̃NS
n,T :

Q̃NS
n,T =

{ n∑
i=0

x̃it = 1 (16)

n∑
i=0

ũit =

n∑
i=0

w̃i
t = 0 (17)

n∑
j=i

ũjt ≥ 0 and

n∑
j=i

w̃j
t ≥ 0 (18)

w̃i
t = ũit + x̃it−1 − x̃it (19)

− x̃it−1 ≤ ũit ≤ x̃it (20)

t∑
t′=t−k

ũit′ ≤ x̃it ∀k ∈ {1, ..., L− 1} (21)

x̃it−k−1 +

t∑
t′=t−k

ũit′ ≥ 0 ∀k ∈ {1, ..., L− 1} (22)

x̃it ∈ [0, 1], ũit ∈ [−1, 1]

}
(23)

Theorem 2.
φ(Qord

n,T ) = Q̃NS
n,T

Proof. We first prove the inclusion φ(Qord
n,T ) ⊆ Q̃NS

n,T . Let (x, u) ∈ Qord
n,T . Let (x̃, ũ, w̃) = φ((x, u)).

We show that (x̃, ũ, w̃) ∈ Q̃NS
n,T . By Lemmas 4 to 7, (x̃, ũ, w̃) satisfy (in)equalities (19), (20), (21)

and (22). Inequalities (16) and (17) are obtained for each t by summing equalities (14) from i = 0
to n, given that xi0 = 1 and ui0 = wi

0 = 0. Inequalities (18) are obtained for each t and eahc i by
summing equalities (14) from j = i to n, given that uit ≥ 0 and wi

t ≥ 0.

Finally we prove Q̃NS
n,T ⊆ φ(Qord

n,T ). Let (x̃, ũ, w̃) ∈ Q̃NS
n,T and let (x, u) = φ−1((x̃, ũ, w̃)). We show

that (x, u) ∈ Qord
n,T . From

∑n
j=i w̃

j
t ≥ 0 we can deduce

∑n
j=i ũ

j
t + x̃jt−1− x̃

j
t ≥ 0 therefore inequality

(2a) is satisfied by (x, u). From ũit ≤ x̃it we obtain
∑n

j=i ũ
j
t ≤

∑n
j=i x̃

j
t therefore inequality (2b)

is satisfied by (x, u). From −x̃it−1 ≤ ũit we obtain
∑i−1

j=0 x̃
j
t−1 + ũjt ≥ 0. Using (16) and (17), it

transforms into
∑n

j=i x̃
j
t−1 + ũjt ≤ 1, showing that inequality (2c) is satisfied by (x, u).

Interpretation of variables (x̃, ũ, w̃) Bijection φ preserves integrality, therefore any integer
solution (x̃, ũ, w̃) corresponds to an integer solution (x, u), and conversely.

Decision variables x̃ ∈ {0, 1}nT can be interpreted as follows:

x̃it =

{
1 if state i is used at time t
0 otherwise

where at each time t, exactly one state is used by the system (by equality (16)).

11



= 1 = -1

ũit
j •

• i

i •

• j

i is upwardly activated (j < i) i is upwardly deactivated (j > i)

w̃i
t

• j

i •

• i

j •

i is downwardly deactivated (j < i) i is downwardly activated (j > i)

Table 1: Meaning of variables ũ and w̃ depending on their values

Variables w̃ ∈ {−1, 0, 1}n(T−1) take the following values:

w̃i
t =

 1 if wi
t = 1 and wi+1

t = 0

−1 if wi
t = 0 and wi+1

t = 1
0 otherwise

Therefore, if w̃i
t = 1, it means that state i is used at time t − 1 but is downwardly deactivated at

time t, meaning that from t − 1 to t, there is a transition from i to some state j < i. If w̃i
t = −1,

it means that state i is not used at time t− 1 but is downwardly activated at time t, meaning that
from t− 1 to t, there is a transition from some state j > i to state i.

Variables ũ ∈ {−1, 0, 1}n(T−1) take the following values:

ũit =

 1 if uit = 1 and ui+1
t = 0

−1 if uit = 0 and ui+1
t = 1

0 otherwise

Therefore, if ũit = 1, it means that state i is not used at time t−1 but is upwardly activated at time
t, meaning that from t− 1 to t, there is a transition from some state j < i to state i. If ũit = −1, it
means that state i is used at time t − 1 but is upwardly deactivated at time t, meaning that from
t− 1 to t, there is a transition from i to some state j > i.

Table 1 synthesizes the meanings of variables ũ and w̃ depending on their values.

2.2.2 Integrality of Q̃NS
n,T

In this section, we show that Q̃NS
n,T is an integral polytope.

Let S = {as, s ∈ S} be a set of integral points of Q̃NS
n,T . We introduce the following notations.

We denote by x̃it(as) (resp. ũit(as), w̃
i
t(as) ) the coordinate x̃it (resp. ũit, w̃

i
t) of point as ∈ S.

We introduce set Si
t ⊆ S containing points of S such that state i is on at time t.

Si
t = {s ∈ S | x̃it(as) = 1}

12



Subset Si
t contains the points as such that state i is used at time t.

The following subsets of S are also defined:

Si,↗a
[t′,t] = {s ∈ S | ∃k ∈ [t′, t] s. t. ũik(as) = 1 and x̃it(as) = 1}

Si,↘a
[t′,t] = {s ∈ S | ∃k ∈ [t′, t] s. t. w̃i

k(as) = −1 and x̃it(as) = 1}

Subset Si,↗a
[t′,t] (resp. Si,↘a

[t′,t] ) contains the points such that state i is upwardly activated (resp.

downwardly activated) at some time k ∈ [t′, t], and such that state i is still used at time t.

We now introduce useful lemmas to prove integrality of Q̃NS
n,T .

Lemma 8. For any point (x̃, ũ, w̃) of Q̃NS
n,T , the following inequality holds:

∀t ∈ T , ∀i ∈ N , x̃it−1 − max
k∈{1,...,L−1}

(
0,

t−1∑
t′=t−k

ũit′

)
≥ w̃i

t

Proof. We consider two cases.

• Case 1: maxk∈{1,...,L−1}

(
0,
∑t−1

t′=t−k ũ
i
t′

)
= 0.

From (20), ũit ≤ x̃it holds. Replacing ũit by the expression given by (19), we obtain the result.

• Case 2: maxk∈{1,...,L−1}

(
0,
∑t−1

t′=t−k ũ
i
t′

)
=
∑t−1

t′=t−k ũ
i
t′ for some k ∈ {1, ..., L− 1}.

From (21), x̃it ≥ ũit +
∑t−1

t′=t−k ũ
i
t′ holds. Replacing ũ′

i

t by the expression given by (19), we
obtain the result.

Lemma 9. For any point (x̃, ũ, w̃) of Q̃NS
n,T , the following inequality holds:

∀t ∈ T , ∀i ∈ N , x̃iT−1 − max
k∈{1,...,L−1}

(
0,

T−1∑
t′=T−k

w̃i
t′

)
≥ −ũit

Proof. We consider two cases.

• Case 1: maxk∈{1,...,L−1}

(
0,
∑t−1

t′=t−k w̃
i
t′

)
= 0.

In this cas the result follows directly from (20).

• Case 2: maxk∈{1,...,L−1}

(
0,
∑t−1

t′=t−k w̃
i
t′

)
=
∑t−1

t′=t−k w̃
i
t′ for some k ∈ {1, ..., L− 1}.

From (21), x̃it−k−1 + ũit +
∑t−1

t′=t−k ũ
i
t′ ≥ 0 holds. Replacing ũit′ by the expression given by

(19), we obtain the result.
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Theorem 3. Polytope Q̃NS
n,T is integral.

Proof. We prove the following result by induction on T : for any point (x̃, ũ, w̃) of Q̃NS
n,T , (x̃, ũ, w̃)

can be written as a convex combination of integral points as ∈ S, such that :

(i) (x̃, ũ, w̃) =
∑

s∈S λsas where
∑

s∈S λs = 1

(ii) ∀t ∈ {1, ..., T}, ∀` ∈ {1, ..., L},
∑

s∈Si,↗a
[t−`+1,t]

λs = maxk∈{1,...,`}

(
0,
∑t

t′=t−k+1 ũ
i
t′

)

(iii) ∀t ∈ {1, ..., T}, ∀` ∈ {1, ..., L},
∑

s∈Si,↘a
[t−`+1,t]

λs = maxk∈{1,...,`}

(
0,
∑t

t′=t−k+1 w̃
i
t′

)
For T = 1, the results trivially hold as variables ũ and w̃ are non-zero only when T ≥ 2.
Suppose the result is true for T − 1.
We first prove (i) for T . Consider a point (x̃, ũ, w̃) of Q̃NS

n,T . By induction hypothesis, the restric-
tion (x̃, ũ, w̃)T−1 of (x̃, ũ, w̃) to the first T − 1 time steps can be written as a convex combination of

integral points as ∈ Q̃ord
n,T−1, s ∈ S: (x̃, ũ, w̃)T−1 =

∑
s∈S λsas where

∑
s∈S λs = 1. We will show

that each point as can be extended to time step T so that for each as we obtain several points
aps = (as, (x

p
s,T , u

p
s,T , w

p
s,T )) ∈ Q̃NS

n,T satisfying: (x̃, ũ, w̃) =
∑

s∈S
∑

p∈Ps
λpsb

p
s where

∑
p∈Ps

λps = λs.

For each state i, (19) gives x̃it = x̃it−1 + ũit − w̃i
t. Therefore, from time T − 1 to time T :

• If w̃i
T > 0: a fraction w̃i

T of state i is downwardly deactivated at time T in point (x̃, ũ, w̃).

In this case, a fraction w̃i
T of points as, s ∈ Si

T−1 must be extended so that state i is

downwardly deactivated at time T (i.e., extended so that the resulting points satisfy xjT = 0
for each j ≥ i). Not all points as, s ∈ Si

T−1, can be extended in such a way: only those in

subset Si
T−1\S

i,↗a
[T−L+1,T−1] are eligible. Indeed, if state i has been upwardly activated at some

time t′ ≥ T − L+ 1 in point as, then state i can not yet be downwardly deactivated at time
T , by no-up-spike constraints.

The eligible fraction of points is therefore:

Qi,↘d
T−1 = x̃iT−1 −

∑
s∈Si,↗a

[T−`+1,T−1]

λs

As (ii) holds for T − 1 we have in particular that

∑
s∈Si,↗a

[t−`+1,t−1]

λs = max
k∈{1,...,L−1}

(
0,

T−1∑
t′=T−k

ũit′

)

Then Qi,↘d
T−1 = x̃iT−1 −maxk∈{1,...,L−1}

(
0,
∑T−1

t′=T−k ũ
i
t′

)
By Lemma 8, Qi,↘d

T−1 ≥ w̃i
T , thus there is a sufficient fraction of eligible points for downward

deactivation of state i at time T . The downward deactivation of state i is performed in
priority, among eligible points, for points such that state i had been downwardly activated
the most recently.
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• If w̃i
T < 0: a fraction −w̃i

T of state i is downwardly actived at time T in point (x̃, ũ, w̃).

In this case, a fraction −w̃i
T of points as, s ∈ ∪j>iS

j
T−1 must be extended so that state i is

downwardly activated at time T (i.e., extended so that the resulting points satisfy xiT = 1

and xjT = 0). Not all points as, s ∈ ∪j>iS
j
T−1, can be extended in such a way; only those in

subset: ⋃
j>i

Sj
T−1\S

j,↗a
[T−L+1,T−1]

are eligible. Indeed, if state j ≥ i has been upwardly activated at some time t′ ≥ T − L + 1
in point as, then state i can not yet be downwardly activated at time T . The eligible fraction
of points is therefore

Qi,↘a
T−1 =

∑
j>i

Qj,↘d
T−1

We saw that Qj,↘d
T−1 ≥ w̃j

T , therefore Qi,↘a
T−1 ≥

∑
j>i w̃

j
T . From equality (15), we obtain

Qi,↘a
T−1 ≥ −w̃i

T . Thus there is a sufficient fraction of eligible points for downward activation.

The downward activation of state i is performed in priority among eligible points in Sj
T−1,

for points such that some state j > i has been downwardly activated the most recently.

• If ũiT < 0: a fraction −ũiT of state i is upwardly deactivated at time T in point (x̃, ũ, w̃).

In this case, a fraction −ũiT of points as, s ∈ Si
T−1 must be extended so that state i is

upwardly deactivated at time T (i.e., extended so that the resulting points satisfy xjT = 0 for
each j ≤ i).

Not all points as, s ∈ Si
T−1, can be extended in such a way: only those in subset Si

T−1\S
i,↘a
[T−L+1,T−1]

are eligible. Indeed, if state i has been downwardly activated at some time t′ ≥ T − L + 1
in point as, then state i can not yet be upwardly deactivated at time T , by no-down-spike
constraints. The eligible fraction of points is therefore:

Qi,↗d
T−1 = x̃iT−1 −

∑
s∈Si,↘a

[T−`+1,T−1]

λs

As (iii) holds for T − 1 we have in particular that

∑
s∈Si,↘a

[t−`+1,t−1]

λs = max
k∈{1,...,L−1}

(
0,

T−1∑
t′=T−k

w̃i
t′

)

Then Qi,↗d
T−1 = x̃iT−1 −maxk∈{1,...,L−1}

(
0,
∑T−1

t′=T−k w̃
i
t′

)
By Lemma 9, Qi,↗d

T−1 ≥ −ũiT , thus there is a sufficient fraction of eligible points for upward
deactivation of state i. The upward deactivation is performed in priority, among eligible
points, for points such that state i had been downwardly activated the most recently.

• If ũiT > 0: a fraction ũiT of state i is upwardly activated at time T in point (x̃, ũ, w̃).
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In this case, a fraction ũiT of points as, s ∈ ∪j<iS
j
T−1 must be extended so that state i is

upwardly activated at time T (i.e., extended so that the resulting points satisfy xiT = 1 and

xjT = 0). Not all points as, s ∈ ∪j<iS
j
T−1, can be extended in such a way; only those in

subset: ⋃
j<i

Sj
T−1\S

j,↘a
[T−L+1,T−1]

are eligible. Indeed, if state j ≥ i has been upwardly activated at some time t′ ≥ T − L + 1
in point as, then state i can not yet be downwardly activated at time T . The eligible fraction
of points is therefore

Qi,↗a
T−1 =

∑
j<i

Qj,↗d
T−1

We saw that Qj,↗d
T−1 ≥ −ũ

j
T , therefore Qi,↗a

T−1 ≥
∑

j<i−ũ
j
T .

Combining equalities (17) and (15), we obtain
∑i

j=0 ũ
j
T ≤ 0. It follows that Qi,↗a

T−1 ≥ ũiT . Thus
there is a sufficient fraction of eligible points for upward activation. The upward activation
of state i is performed in priority, among eligible points in Sj

T−1, for points such that states
j < i have been upwardly activated the most recently.

Apart from points extended in order to perform an activation or a deactivation of some state,
other points as are extended so that the same operating state is maintained from T −1 to T . Thus,
we obtain a set of extended points as, s ∈ S such that (x̃, ũ, w̃) =

∑
s∈S λsas, where

∑
s∈S λs = 1

Let us now prove (ii). Let Q =
∑

s∈Si,↗a
[T−`+1,T ]

λs for a given ` ∈ {1, ..., L}. By construction of

the points as, it holds that Q = max

(
ũiT +

∑
s∈Si,↗a

[T−`+1,T−1]
λs, 0

)
. Indeed, if ũiT ≥ 0, then there

is a fraction ũiT of points as that have upwardly activated i at time T . This fraction adds to the
fraction of points as having upwardly activated point i at some time t′ ∈ [T − ` + 1, T − 1], as
i cannot be upwardly activated again at time T in these points, by no-spike constraints. Then,
Q = ũiT +

∑
s∈Si,↗a

[T−`+1,T−1]
λs. Otherwise if ũiT < 0, then there is a fraction −ũiT of points as

that have upwardly deactivated i at time T . By construction, these points are chosen in priority
among those where state i had been upwardly activated the most recently, i.e., among points
in Si,↗a

[T−`+1,T−1]. Therefore, fraction −ũiT is substracted to Si,↗a
[T−`+1,T−1]λs until reaching 0, i.e.

Q = max

(
ũiT +

∑
s∈Si,↗a

[T−`+1,T−1]
λs, 0

)
. In both cases, (ii) can be obtained using the induction

hypothesis.
We finally prove (iii). Let Q =

∑
s∈Si,↘a

[T−`+1,T ]
λs for a given ` ∈ {1, ..., L}. By construction of

points as, it holds that Q = max

(
w̃i

T +
∑

s∈Si,↘a
[T−`+1,T−1]

λs, 0

)
. Indeed, if w̃i

T ≥ 0, then there is a

fraction w̃i
T of points as that have downwardly deactivated i at time T . This fraction adds to the

fraction of points having downwardly deactivated point i at some time t′ ∈ [T − ` + 1, T − 1], as
i cannot be downwardly deactivated again at time T in these points, by the no-spike constraints.
Then, Q = w̃i

T +
∑

s∈Si,↗a
[T−`+1,T−1]

λs in this case. Otherwise if w̃i
T < 0, then there is a fraction

−w̃i
T of points as that have downwardly deactivated i at time T . By construction, these points

are chosen in priority among those where state i had been downwardly activated the most recently,
i.e., among points in Si,↘a

[T−`+1,T−1]. Therefore, fraction ũiT is substracted to Si,↘a
[T−`+1,T−1]λs until
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reaching 0, i.e. Q = max

(
ũiT +

∑
s∈Si,↗a

[T−`+1,T−1]
λs, 0

)
. In both cases, (iii) can be obtained using

the induction hypothesis.

2.2.3 Integrality of QNS
n,T

Corollary 1. Polytope QNS
n,T is integral.

Proof. It can easily be seen that bijection φ preserves integrality. As it is also linear, it preserves
extreme points as well. Therefore the integrality of Q̃NS

n,T implies the integrality of QNS
n,T .

Corollary 2 (Complete polyhedral description of PNS). Polytope PNS is completely described by
inequalities (2a) (2b) (2c) (8) (10) (11) (12) (13).

Proof. From propositions 2, 3 and 5, inequalities (10) (11) (12) (13) are valid for PNS , and dominate
(3) and (9). By Corollary 1, it shows that the convex hull of (2a) (2b) (2c) (8) (10) (11) (12) (13)
is integral, therefore proving the result.

3 Conclusion and perspectives

Minimum-time and no-spike constraints have been defined as generalizations of min-up/min-down
constraints from the literature. We have shown that these constraints could be both formulated
with extended turn-on/off inequalities. For the minimum-time constraints, turn-on/off inequalities
involve multiple choice variables and are thus coupled to exclusion constraints. For the no-spike
constraints, turn-on/off inequalities involve incremental variables and are thus coupled to order
constraints. Associated minimum-time polytope and no-spike polytope have been defined. Linear
size families of valid inequalities, generalizing formulation inequalities, are introduced for both
polytopes. For each polytope, these valid inequalities, along with formulation inequalities, are
shown to provide a complete linear description.

As a perspective, the polyhedral study could be further developed for even more general cases:
for example, the no-spike polytope has been defined here with symmetric min-up/min-down times.
Even though in practice instances are usually symmetric, the non-symmetric case could also be
explored. Furthermore, polyhedral couplings between minimum-time or no-spike constraints and
other constraints could also be worth investigating to solve practical Unit Commitment Problems.
For example, an interesting coupling would be with transition constraints enforcing that from each
state, only a subset of other states are accessible. Finally, experimental results could be conducted
to determine the cases when the valid inequalities proposed in this paper lead to a more efficient
resolution.
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[20] Clemens Zeile, Nicolò Robuschi, and Sebastian Sager. Mixed-integer optimal control under
minimum dwell time constraints. Mathematical Programming, 188(2):653–694, 2021.

19


	The Minimum-Time polytope
	Strengthened Upper Bound (SUB) inequalities
	Complete polyhedral description of the minimum-time polytope

	The No-Spike polytope
	Valid inequalities
	Complete polyhedral description of the no-spike polytope
	Linear bijective transformation of QNSn,T
	Integrality of Q"0365QNSn,T
	Integrality of QNSn,T


	Conclusion and perspectives

