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E. Lorentz

Laboratoire de Mécanique des Structures Industséliurables, UMR CNRS/EDF 2832, 1 av. Général ddl&®2141 Clamart cedex, France.

Abstract

The phenomena of crack initiation, propagation altichate fracture are studied here under the falhgvassumptions:
(i) the crack law is modelled by means of a colezione model and (ii) the crack paths are postlilatgriori. In this
context, a variational formulation is proposed whielies on an augmented Lagrangian. A mixed iaterffinite
element is introduced to discretise the crack patesdegrees of freedom of which consist in tlepldicement on both
crack lips and the density of cohesive forces. Eniables an exact treatment of multi-valued coleelsiws (e.qg. initial
adhesion, contact conditions, possible rigid uniogdetc.), without penalty regularisation.

A special attention is paid to the convergence widsh-refinement, i.e. the well-posedness of tbélpm, on the basis
of theoretical results of contact mechanics andesscomplementary numerical investigations. Fulfilnehthe LBB
condition is the key factor to gain the desiredpemies. Moreover, it is shown that the integratifrthe constitutive
law admits a unique solution as soon as some dondin the augmented Lagrangian is enforced. Kinall 3D
simulation shows the applicability to practical smgr problems, including in particular the robesth of the
formulation and its compatibility with classical lstion algorithms (Newton method, line-search, patlfowing
techniques, ...).

Keywords: fracture mechanics ; cohesive zone model ; interfagite element ; mixed finite element ; augmented
Lagrangian

1. INTRODUCTION

Various approaches are available to predict thetdre of industrial components submitted to
excessive loading, ranging from failure criteriantm local damage constitutive laws. In order to be
introduced in engineering simulation practices, ythghould meet a compromise between
computational robustness, efficiency and physicalieacy. Other characteristics may also facilitate
the process: consistency with former practices pbaity, limitation of algorithmic parameters,
applicability to various configurations, etc. Indlgontext, the use of cohesive laws in combination

with mixed interface finite elements is suggestadihe basis of the considerations exposed below.

Cohesive zone models as an enhancement of the Griffith theory

According to [1,2], the description of crack iaiion and propagation should rely at least on two

material parameters (for instance a critical sti@ss$ a fracture energy) in order to (i) cover the



range of initially sound structures and crackedsoaad (ii) correct the spurious scale effects
observed with the Griffith theory [3]. Cohesive ramodels, which go back to the pioneering work
of Dugdale [4] and Barenblatt [5], constitute a dwand well-tried framework to respond this
demand. Thus, they provide minimal improvementvwercome the limitations of the Griffith

theory, they describe both stages of initiation @anobagation, they take into account potential
crack closure, they do not require the costly spaifinement necessary with non local constitutive

laws.

The question of crack path prediction

Cohesive zone models have been given a variatsgiahg [6,7] in terms of minimisation of an
energy, which implicitly encompasses crack pathdigteon. However, the corresponding
discretisation and minimisation procedures needtgeare in order to ensure convergence with
mesh refinement and remain complex [8,9]. To circeim the difficulty, an alternative consists in
following the propagation of individual cracks, @bgct that has been paid much attention for the
last fifteen years. Though attractive, the appraacist fulfil complex and interconnected demands
in order to be predictive: construction of a geamaltly continuous crack path which goes across
pre-existing finite elements [10,11], derivation afcrack orientation criterion which provides a
satisfactory direction as soon as damage occurs §jlicability of the criterion in complex 3D
situations with possibly coarse mesh [13], continof the structural response with respect to time
[14], stability of the numerical scheme for cragkpagation [15]. Even though specific numerical
strategies have emerged that should cope withuthgroblem, see [13,16] for instance, the fact
that it is still a very active research field yéiow/s that fulfilment of all the previous demands
remains a complex task. A straightforward appl@atin engineering practices seems premature.
Therefore, in what follows, the crack path is pased a priori and not predicted by the
computation. In spite of this major restriction, mpandustrial applications still enter the scope of

the article in practice, especially for small prgaons or interfacial cracks.

Multi-valued cohesive laws and penalty methods

Cohesive laws for cracking usually incorporatetr@ss threshold, contact conditions (crack
closure) and possibly rigid unloading branches.&Omathematical ground, this results in multi-

valued functions relating the displacement gap obesive stresses, or equivalently to non



continuous differentiable energies. Note that te&ture is not restricted to initial adhesion (ptimr
local cohesive zone inception) but may also appegrtime after the cohesive regime is triggered
(unloading, closure): circumventing the difficulby introducing discontinuous elements after the
threshold is reached does not solve every caseg@larisation of the function is often proposed in
the literature, based on a (quadratic) penalty ntktfen infinite stiffness is replaced by an
extremely high one). Though attractive, speciatrdtibn has to be paid to the quadrature rule in
order to avoid spurious stress oscillations, sdel[l] for interface elements. Namely, the usual
Gaussian quadrature rule lacks the necessary piexpty ensure convergence with combined mesh
refinement and penalty [18]. Moreover, a penaliffrgss may result in ill-conditioning of the
global stiffness matrix, leading to increasing comapional costs with penalty. At last, as soon as
the energy is no more convex (which is the caseobtsive laws), the solution is not necessarily
continuous with respect to the penalty paramesesjng the crucial question of how to choose the
latter. Even though operational, penalty metho@smst® need great care and expertise, and may not
be adequate for common engineering practices. Tdrereve suggest not to regularise the problem
but to eliminate the displacement discontinuity aatlocal level through a decomposition —

coordination method [19].

Discretisation of displacement discontinuities

Under the assumption of a priori knowledge of gwential crack paths, a straightforward
method of discretisation consists in explicitly mmieg the crack paths with interface finite
elements. Application of the above-mentioned deamsitipn — coordination method then results in
a mixed interface element which is the purposéhefarticle : its unknowns are the displacements
(quadratic shape functions) and the cohesive fderssities (linear shape functions). This extends
the ideas of mortar elements [20], also widely eggplto contact problems (a special case of

cohesive law), see for instance [21].

Other discretisation techniques could have beersidered, which would have avoided the
explicit meshing of the crack path. Extended firelements (X-FEM) [22,23] introduce global
unknowns for the displacement discontinuity. Howeavoiding penalty regularisation appears
more difficult than for interface elements. Evenugh some promising results have been obtained

for linear tetrahedrons in the treatment of contaxtditions [24], the discretisation of the contact



pressure remains heuristic and may fail to fulfie tLBB condition. Alternatively, embedded
discontinuity finite elements (E-FEM) [25,26] relgn a local (i.e. at the element level)
discretisation of the displacement discontinuity ethcan be eliminated from the global system by
static condensation, hence avoiding penalty [27i tBe stability condition (patch-test) requires a
non symmetrical formulation. Moreover, presentaion E-FEM in the literature generally rely on
a linear interpolation of the displacement fietdla constant jump inside each element, resulting
in poor convergence rates with mesh refinementnEkieugh the extension to non constant jumps
has been proposed in [28] to circumvent lockingnoimeena, higher degree interpolations would
raise the question of the algorithmic implementatimperform the static condensation. Regarding
the advantages and drawbacks of each family of exlésn we choose to privilege the mixed
interface finite element. We think that the othamilies are better suited for the more difficult

problem of crack path prediction.

The article is organised as follows. Section 2nshbow the application of the decomposition —
coordination technique to cohesive problems leada natural way to the definition of a mixed
finite element based on an augmented LagrangiactioBe3 details the resulting integration of a
special cohesive law which possesses all the liaatares to be representative of more complex
laws: perfect initial bonding, mixed-mode fracturegversibility, crack closure, stress-free ultima
fracture). Then, the implementation is validated abyest problem which admits a closed-form
solution. Section 4 is dedicated to numerical asedyof the convergence with mesh refinement.

Finally, a 3D application is shown that highligkite potency of the approach.

2. CONSTRUCTION OF A MIXED INTERFACE FINITE ELEMENT

2.1 Preliminary: main assumptions
In order to focus on the interface elements withadtitional complexity, the following
assumptions are postulated from now on:

— postulated crack path. As stated in the introduction, the crack pathdassidered given a priori

and not a result of the computation. Thus it isliekly meshed with interface elements;



— infinitessmal perturbation. In particular, the displacements should keep keraugh so that
geometrically coincident points on both sides o# ttrack path be considered remaining

coincident. This is reasonable in the context d@flbrfracture;

— élastic bulk behaviour. Definition of the interface element is independehthe constitutive
law inside the bulk material. However, for the saksimplicity, the numerical simulations are

led with an elastic bulk behaviour. The only norehrity then results from the cohesive law.

2.2 Modelling fracture as an energy minimisation

In their approach of cohesive fracture mecharicancfort and Marigo [6] describe the state of a
structure Q through the displacement field which may admit discontinuitieﬁz[[u]] across
surfaces I‘(u). For a given load, the actual displacement is attarised by an optimality
condition: it is a local minimum of the potentialexgy, expressed as the sum of the elastic strain

energy, the cohesive energy and the work of exitéonzes :
Epot(u) = Eel(u) + Efr ([U]]) - Vvext(u)

Ee.(u)= J' cD(a(u))dQ : Efr(ﬁ)zf I'I(S)dl' (1)

QIT(u) r

where ¢ is the strain tensor the (bulk) strain energy density ardl the (surface) cohesive
energy density. In such a presentation, the fractnechanisms are considered reversible. In the
next section, some irreversibility will be introdietthrough the dependence of the cohesive energy
on internal variables. In that case, the loadinth feas to be discretised, but the solution over a
given load increment is still characterised by (Lg. a minimisation with respect to the
displacement field. It is remarkable that all feaetu of the problem are deduced from the

minimisation step, namely:

— cohesive law. It relates the displacement discontinuidy to the traction vectort through

(generalised) differentiation dfl ;

— contact conditions. They are enforced by means of the cohesive enalggh involves an

indicator function that precludes interpenetrations



— stress criterion for crack inception. Its derivation is detailed in [7]. Note that & ieduced to
6 =0 as soon as the cohesive energy denditys differentiable a® =0. Therefore, the non

differentiability of T at =0 is an essential requirement to get a non zeressttgeshold;

— crack path prediction. Indeed, all possible discontinuous displacemerag be considered;

However, considering all possible discontinuouspldisement lead to severe computational
difficulties related to the discretisation of then€tional spaceBD(Q). In particular, allowing
discontinuities across each finite element is nabaverging process and thus it results in mesh
dependency. Some attempts have been led, based @itta regularisation of discontinuities [8] or
on mesh adaptation [9], but they are restricte@tiffith surface energy and still result in complex
computations. Hence the assumption of postulatedckcrpath: potential displacement
discontinuities appear only across surfaCesvhich are postulated a priori and do no more dépen

onu.

2.3 Derivation of a saddle-point problem throughd@composition — coordination method

Even though the crack path is postulated, a stifaigvard minimisation of the potential energy
is out of reach because of the non differentiabditthe cohesive energy. In order to circumvest th
difficulty, a decomposition — coordination techneq{l9] is introduced which confines the non

differentiability to a local level (Gauss points)

2.3.1 Augmented Lagrangian

The relation between the discontinuity fiel and the displacement field is explicitly
introduced into the minimisation process. Consitierenergy E which depends explicitly on both
uando:

E(u,8):JCD(s(u))dQ - W, (u) +J n(s)dr (2)
Q\r r
Minimisation of the potential energy (1) is thenua@lent to the following constraint problem,
where it is implicitly assumed that the displacetnshould belong to the set of kinematically
admissible displacements:

min E(u ) 3)



The linear constrainﬂu]]:ﬁ is treated by dualisation: a saddle po(m;ﬁ,x) of the following
LagrangianL , wherel denotes the field of Lagrange multipliers, cormesgs to a solutiorﬁu,ﬁ)
of (3):

£(u,8,1) = E(us) + Jk[@[[u]]—ﬁ)dl’ (4)

r

In order to gain some coercivity with respectétovhich will prove necessary hereafter, a penalty
term is finally added, without influence on thewgans since it is equal to zero for a fulfilled
constraint. This results in the augmented Lagrandia with r the penalty coefficient:

L (udr) = E(us) + Ju@[[u]]—a)dr + j%([[u}]—ﬁ)zdl' (5)

r r

Remark:

In the context of adhesion6 €0, N =0), an alternative is proposed in [29]. It relies an
discontinuous Galerkin method to enforce weaklyctbastraint[[u]]:o. It results in finding the

stationary point of the following functional witkspect tou :

cl(u)m +62(U) [

J(u)=E(u,Q+JE(u)[@u]]dl’ +J%[uﬂ2dr with X(u)= 5 (6)

r r

where ¢' and 6” denote respectively the stress field on both sidds andn is its local normal.
):(u) appears as an average stress vector. A comparigbe expressions (5) and (6) shows that
the Lagrange multiplier is actually replaced by #werage stress vector. Therefore, it avoids the
introduction of the additional unknowrs but requires the computation (ﬁ(u) which is not
common in the context of displacement-based figléenents and may depend on the local topology

of the mesh. Extension to non linear cohesive le@esns to remain an open question.

2.3.2 Example: application to contact problems

It has been shown in [30] that in the case of mmetact conditions (no cohesive force), the
minimisation with respect té6 admits a closed-form solution which coincides vtk augmented
Lagrangian initially introduced in [31]. Indeedgtlfunction T reduces to an indicator function in

that case :

0 if & 20
n(s)=1 +(5n):{+oo o ()



where the subscriph denotes the component normal to the contact suffagd, =6 [@ is the
opening displacementy is the normal tol" ). The indicator function precludes interpenetmatio
since negative displacement jumps would resultninindinite energy (hence not a minimum). A
straightforward minimisation of the augmented Lagyian with respect t@ leads to the following

expression (in which the MacCauley brackets denote the positive part of a scale:

. 1 2
min £, (u82) = E(u) =Wy () #o- | [([w] -A)" =77 |dr ®)
r
It is exactly the augmented Lagrangian introducef81]. This result suggests that some properties

obtained for mixed duality-penalty contact methoday be extended to the present cohesive

approach, in particular the choice of adequatéefieiements.

2.3.3 Characterisation of the saddle-point

The solution algorithm will not deal with the inedity characterisation of a saddle-point but
with the variational optimality conditions. For taegmented Lagrangian (5), the latter read:

3 & J [t & r([u} 8)[Bad = 0 with BN (5) (9)

T

5 u Jc:ac uyd + J[Mr([[u]]— 3)[puld = W, (5u) with 0=%(8) (10)

Q\r r

5 A J([[u]]— 3dprd = 0 (11)

r

The equation (9) enforces the cohesive constitléwe Signification of the subgradiedfl will be
given in section 3; at this stage, it is sufficiemsay that (81 (8) means that and$ are related
by the cohesive constitutive law. Therefore, theadgn (9) provides an interpretation for the
Lagrange multiplierd : except for the penalty term, the Lagrange muéiipineasures the cohesive
forces. The equation (10) expresses the equilibrinside the bulk and along the discontinuity
surfacel . Finally, the equation (11) enforces the constragtween the displacement field and its

discontinuities.



2.4 Finite element discretisation

As the crack path is postulated and thanks to the infinitesimal yrdsdtion assumption, the
spatial discretisation of the system (9)-(11) maly ron a simple kind of mortar segment-to-
segment element. As depicted in figure 1, condidatr the sub-domainQ_ and Q, (the parts of
Q respectively below and above) are discretised by tetrahedra or hexahedra $dlteanodes on
both sides off coincide. Note that this is not a stringent demfmmca meshing algorithm, at least
for simple shapes foF , namely planes. In that case, degenerated pristhexahedra can be used

to discretisel” and relate both lipf_ andl", of the potential cohesive crack.

Consider a given mesh, henceforth characterisethéysubscripth (maximal size of finite
elements, for instance). A quadratic interpolatisith classical Lagrange finite elements (P2-

continuous) is adopted inside the bulk. The sp&cksorete displacement fields, reads :
uh:{ G o u(d [N } 12)

where{U} denotes the displacement nodal vector fMH the matrix of quadratic shape functions.
The trace of the interpolated displacementorand I, is piecewise quadratic too, and such is the

displacement discontinuity:
0F  u (9 [N v (9 [N(9HY) (13)
0w [ued [DENY  with [D(H, [N.(5H] [N-(9)] 14)

where[N_] and[N,] are the trace ofN] respectively on™_ and ", and[D] the matrix for the
guadratic shape functions which interpolates tlspldcement jump. Note that it is convenient to
introduce a rotation intdD] to get the components diu] in a local co-ordinate system to

distinguish the normal and the tangential parts.

The Lagrange multiplier fieldh is interpolated onlr by means of piecewise linear shape

functions (P1-continuous), resulting in the spafceiscrete Lagrange multipliers, :
sh:{ h; O A(s) [L(s)){A} } (15)

where{A} collects the nodal unknowns for the Lagrange rplig and[L] is the matrix of linear
shape functions or . Thus, the constrairﬁu]]:ﬁ enforced by (11) is only achieved in a weak

sense.



At last, the discretisation of the discontinuiigid 6 0D, is simply based on collocation points
on I, of co-ordinatess, . They are chosen to be the integration pointhefGauss quadrature rule
with three (triangles) or four (quadrangles) poibnyselement. Actually, this corresponds to a P1-
discontinuous interpolation os. The weights of the Gauss points are denatgd they will be
used to compute the integrals in (9)-(11). Theiapdiscretisation, the corresponding notation and

pictures of the finite elements are given in table

The field 8 may vanish from the global formulation by meanssiattic condensation. Indeed,
with such a discretisation, (9) results in the éxatisfaction of the cohesive constitutive relatat

each collocation point :

ty =k +r([u,]-5,) @ (3,)  with 1"’ | (16)

Integration of the constitutive relation, i.e. dau of (16) as detailed in the next section, alaa

computed, as a function (denotedl) of {U} and{A}:
ty =k +r([u,]-8,) 0N (3,) = 32 8(Ju,].n.F 3(U.A) (17)

The penalty parameter will be adjusted so that the solutidy to (16) be unique, whatevét}

and{A}. This is a demand to ensure robustness.

The introduction of (17) into (10) and (11) thenoydes the non linear system the unknowns of
which are the nodal displacemefits} and the nodal Lagrange multipligfra} :

J[DN]T:G(U)m + gwg[Dg]TD([Lg}{A% r[D,J¥-r§ud) = {R} @8

Q\r

;wg[tgf o, {4 quA) =0 (19)

The bulk integral and the nodal vector of exteffioates are computed in a classical way. Finally,
this system is solved simultaneously with respecfW} and{A} by means of a (generalised)
Newton method, where the tangent operator is symeraesince (18)-(19) correspond to a saddle-

point problem.

Other solution technigues could have been congidierénd the saddle-point of the augmented
Lagrangian (5), depending in which order the vdeslo, 6 and A are treated. Some alternatives

are proposed in [19] based on Uzawa type algorithimparticular, one of them corresponds to the

10



LATIN method proposed in [32] and is based on thowing loop scheme: (i) minimisation with
respect toé (the local non linear problem), (ii) updating thegrange multiplierh by a gradient
method, (iii) minimisation with respect to (the global linear problem) and (iv) updating agai.
Complementary highlights about this proposition barfound in [33]. In [30], another alternative is
suggested : (i) combined minimisation with resp&ex:t(u,é), then (ii) actualisation of. by a
gradient method. The latter may also be replaced BfGS method, see [34] in another context.

Among the many solution techniques, our choicdnefNewton method as in [31] is motivated by:
— its good scalability with respect to increasingnber of degrees of freedom,
— its classical algorithmic setting in pre-existingte element software,

— its compatibility with other algorithmic procedusr (line-search, path-following methods, etc.).

2.5 Some insights towards mathematical investigasio

A precise mathematical analysis of the mixed fdation of the cohesive problem is out of the
scope of the article. In this part, we only aingaining some confidence regarding the choice of the
augmented Lagrangian and the spatial discretisaifmst of the comments hereafter are based on
analyses dedicated to contact problems. Theretbey, are only hints for the comprehension of

cohesive problems.

2.5.1 Appropriate functional space for the Lagrange multiplier

Thanks to the bulk elasticity, (each componenttlod displacement field belongs to the space
H*(Q.)xH'(Q,). Hence, the displacement discontinuity lies inspaceH??(I"). And to fulfil
the LBB condition for the continuous problem, thmace for the Lagrange multiplier is its dual,
H “¥(I), see [35]. Other choices such EYT") would not satisfy the LBB condition. However,
according to [36], solution algorithms based on #hemented Lagrangian require at least the
LZ(F) regularity in order to avoid a dependency on tkeafty parameter. Else, there is weak
convergence towards the solution Frh‘]/z(r) with increasing penalty parameters. Fortunatélg, t

effective solution mostly belongs 15 (I") , except for very singular loading [36,18].

Therefore, regarding these possible limitationsumerical analysis of the dependence on the

penalty parameter and of the convergence is |lsédtion 4.

11



2.5.2 Choice of finite element interpolations

The mixed finite element discretisation must $gtistability conditions among which the
discrete inf-sup one (LBB condition). This presesbthat the space for the discrete Lagrange
multiplier should not be too large compared to $pace for the discrete displacement along the
crack [37]. In particular, a P1-discontinuous iptdation of A with P2-continuousu, which
corresponds to the limit of penalty methods witlb@aussian quadrature rule, does not satisfy the

inf-sup condition [35].

Actually, with a P2-continuous interpolation far, the following choices have been analysed in
[35] which satisfy the inf-sup condition : P2/P22/P1-continuous and P2/P0. Practical
considerations then lead us to the choice P2/Pdeelh P2/P2 interpolations may produce
oscillatory results for coarse meshes, even thatghoscillations vanish with mesh refinement
[18]. In addition, we observe that the numericgbaithm requires more iterations to converge than
with a P2/P1 discretisation, a fact also reportefilB]. And that without benefit compared to the
accuracy and convergence rate obtained with a P@iéthent. On the other hand, PO Lagrange
multipliers hinder application of the Newton methbdcause the tangent matrix is no more
invertible. Moreover, they induce a loss of accyrdderefore, they are disregarded, which leaves

us with the P2/P1-continuous finite element, prdypéie best choice for the considered problem.

2.5.3 Sabilizing effect of penalty

To ensure stability of the finite element formidat another condition should be fulfilled : the
ellipticity condition. On the contrary of the LBBdition, this one prescribes that the space fer th
discrete Lagrange multiplier should not be too $ncaimpared to the space for the discrete
displacement along the crack [37]. Else, displaggnescillation modes may appear with mesh
refinement. The condition is more complex to statde case of non linear problems; in particular,

the lack of convexity and coercivity of the cohesenergy adds some specificities.

We propose here a rough observation which higtdighe role of the penalty coefficient.

Consider the patch-test in which the displacemieid 11 is linear with constant discontinuity:

[u]=8° constan (20)

12



This displacement field is introduced in the diser@roblem (17)-(19); a solutiod =8° is
expected to pass the patch-test. Unfortunatelyem#ing on the penalty parameter, this is not
necessarily true. Indeed, the weak constraint §h8) enforces:
80D, std I £, J(-SO B) rd= 0 = §-3°0L (21)
r

The vector space,” is not reduced tc§0} becausadim £, <dimD, (respectively P1-continuous
and P1-discontinuous polynomials n). Actually, £, enables oscillations @f aroundd®. They
should be controlled by the cohesive enefgysince, in the present case, the discrete syst@&jn (1
(19) may be reinterpreted as the following minirticaproblem, withd =8° +5":

Find 6'0¢,” minimising JI'I (5')@ withl (3N (5% 5% %aml (22)

r

However, 1 is neither convex, nor coercive " (section 3). Alone, it is not sufficient to coritro
the oscillations in order to ensude=0. The role is devoted to the penalty term. Supplaaethere
exists a constantl © such that, is strictly convex (and coercive) for amy>H® (in the case of
frictionless contact, one had®=0). Then, "' =0 is the only solution, thanks to convexity: the
penalty term controls the oscillations. In additidgrwill be checked in section 4 that for increwasi

mesh refinement, the solution does not depend®ratue ofr > H®.

3. INTEGRATION OF THE COHESIVE CONSTITUTIVE LAW

The cohesive constitutive behaviour is totallyined by the cohesive energy densfiy(3).
Even though the variational formulation of the poers section encompasses many choices of
cohesive energy, we now focus on a specific cokesiodel so as to illustrate the integration
procedure and in particular how the non-differeritity should be treated. For the sake of

simplicity, its only features are :
() contact conditions;
(i)  perfect initial bonding;
(i)  fracture triggered by both tension and shear;
(iv) total ultimate fracture, i.e. zero cohesiveckes beyond some damage level;

(v) irreversibility of fracture.

13



In particular, it means that there is no ultimaietion, nor distinction between tension and shear
fracture mechanisms. Nevertheless, these featasss sufficient to evaluate the capabilities of the
mixed finite element in realistic configurationss ahown in the next section where some

simulations based on this model will be performed.

Preliminary notations.
Because of the non interpenetration constraint, dimection n normal to the crack path
(opening/compression) has to be distinguished fribia in-plane directions (sliding/shear).

Therefore, the following notations are introducetiere v denotes any vector quantity:

nm=1 ; v,=v@ ; v,=v-vn ; (v), =(v,)n+v, ; |v|, =(<v>+ @/>+)]/2 (23)

3.1 The Talon — Curnier constitutive law

The cohesive constitutive law proposed by Talord a@urnier [38] fulfils the five
abovementioned demands and can easily be caghm&nergetic framework (1). The responses of
the model in pure tension and pure shear and thessinitiation criterion are plotted in figure 2.

The corresponding cohesive energy is defined &swsl

First, tension and shear displacement discontesuére combined in a unique scadgy which
measures the magnitude of the discontinuity, hefotfdling (iii). Here, a quadratic form is

assumed for sake of simplicity:
O, =Vo [ (24)

Then, irreversibility (v) is taken into account means of an additional scalar internal variakle

which measures the current maximal loading level:

K(t)=supd,, (t') (25)

t'<t
The cohesive energy depends on the internal variabdnd on the equivalent displacement jump
d,,- Contact conditions (i) are taken care by an iaic function which restricts the normal
discontinuity tod, =0 (opening):

n(s,x)=1. (5n)+L|J(maX(5eq,K)) with ¢ R* =R (26)

14



The function p characterises namely the response to a monotopores mode | solicitation.
Following [7], ¢ should be a differentiable increasing function,evehc® :Lp’(O) defines the
critical stress which parameterises the initiateiterion (ii). Moreover, stability of the fracture
process requires thgt be concave [39]. And at last, the ultimate fraetdemand (iv) is fulfilled as
soon asy reaches its upper bour@® for a finite valued,, =&, whereG® is the fracture energy
and &° the critical opening beyond which cohesive foreasish. Therefore, the following function

Y is chosen, which corresponds to the charactesidepicted in figure 2:

0 0
G 2 2-—| if 3, <0
W(d,) = d 5 (27)
G° if &, =0
along with the relation between material parameters
G* I%GC o (28)

At this stage, the cohesive energy and hence thestitutive law are totally defined.
Nevertheless, it may be interesting to explicitkpeess the relation between the displacement
discontinuityd and the tension vectdr, which is condensed in the following differentiatlusion,

wheredll denotes the sub-gradient @f in the sense of Clarke [40]:
ton () (29)
For a given value ok, a rough interpretation of the subgradiemnt (6) is the set of slopes less

steep than any directional derivative of at 8 (all admissible directions are considered).

Mathematically, it reads:

6I‘I(6):{ tOR*;0 @ ROt °(6,n)} (30)

wherell" (6,1)) is the directional derivative dfl at é along the direction:

N (8,v)= IimsuprI (d+Zz)—I‘I (d)
Z- o

d-3d

(31)
This definition coincides with the gradient diit anywhere N is differentiable. Therefore,

considering (26), points which deserve a spectahtibn ares =0, 5, =0 and 9., = K. Following

the definition (30), the subgradient is determifgdmeans of straightforward (but cumbersome)
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computations. Its expression depends on the caesideoint (5,K), with four different domains

corresponding to four different regimes of consitiel behaviour. It reads:

point(6 =0,k= O) . perfect adhesion, i.e. initiation criterion

on (s)={ 1o ft|<o | (32)
— domain wher&d,, <k : crumpling
aﬂ(ﬁ):{tnn;tnso andd, > 0 andt 8 = C} (33)
— hyper-cone&d,, =k >0 : unloading
_ . W' (k) _
on(s)=4 tn+pd; 0<p< " andt, < 0 andd, = 0 and, §, = (34)
— domain wher&,, >k : damage
or (6):{ tnn+qf(5eq)6i; t <0 and § =0 andt, § = o} (35)
€q
Remarks:
1. There exists a domain for the cohesive force Wwharresponds to a zero discontinuity (32): it

3.2

Is indeed an initiation criterion, depicted in figl2c. This is related to the non differentiability
of M at$=0. The shape of the domain depends directly on tpeesgion ofd,, . Note that
the domain is larger than the one exhibited ind&tause there is only one crack direction

which is considered (normal to) instead of any possible direction.

The Kuhn and Tucker condition which appears in)-(38) means that in the case of possible
contact ©, =0), the cohesive force is compressite0) and the value of the compression

is left undefined by the constitutive law.

There exists a gap between crumpling and damaggitons, that is the cohesive force is not

continuous with respect to the displacement disoaity (34).

In case of pure mode | or pure shear mode,dbponses in figure 2 are retrieved. Note that

the peak values in tension and in shear modesjaisd because of the choice of the norm (24).

Numerical integration

According to (17), numerical integration of thenstitutive relation consists in computiag for

given values of Ju,| and &

4+ and that for each Gauss point (from now on, thigseript g is
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omitted). Thus, application of the mixed interfageité element leads to a constitutive law
integration where forces are inputs (along with digplacement discontinuitﬁ/u]] and the internal
variable k) and displacement gaps are outputs, i.e. the gevermat of usual (primal) interface

elements. Actually, (17) is a characterisationhef following minimum:

min[k[@[[u]]—ﬁ)+%([[u]]—6)2+I'I(6,K)} h+r[u]-rs Do (8 )  (36)

S0R3

Moreover, the evolution of the internal variabteshould be involved. A discretisation of time is

n

necessary. Consider a sequence of instehtst' <... <t" and the corresponding quantitie$,
|[u“]], 8" and k". Application of an implicit scheme to discretidee tmodel of irreversibility
introduced in (25)-(26) results in a two-step ite@aprocess [41]:

8" =arg min[x” [@[u“]] —8) +L2(|[u“]] —6)2 + I'I(8 ,K”‘l)} (37)

S0RS

K" = max(K”‘l ,6;) (38)

Of course, the actualisation (38) does not raisecarestion; solving the discretised system (37)-
(38) then reduces to the problem (36) wikh=k"™", hence a fixed parameter. A graphical
interpretation of the differential inclusion in (38 provided in figure 3 in the case of pure méde
without unloading : a solution is the intersectufrthe linear functions — k+r[[u]]—r8 with the
graph drl (S,K”‘l); in particular, the penalty coefficient is the (negative) slope of the linear

function.

In order to achieve robustness of the integraitas,desirable that the function between brackets
in (36) be strictly convex with respect 8o0so that the minimum be unique. This is equivaterthe
strict convexity of the augmented functidi, introduced in (22). Therefore, it is not only a
guestion of robustness, important by itself, babaif well-posedness to avoid oscillations as dtate
in subsection 2.5.3. Introducing ¢ the softening modulus of the constitutive relatiarsufficient

condition for strict convexity is:

r >max

x=0

W (x) == =H° (39)

Its graphical interpretation is straightforward 6gure 3 in the case of pure mode | without

unloading.
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Sketch of the proof.

The indicator function is convex and does not nspecial attention. Regarding convexity, the
penalty term can be reduced to a quadratic funadiod,, (let us denoted,, :N(6) for what
follows). At last, the following property is appliestating that a functioge N is strictly convex if

N is strictly convex (yes)g strictly increasing (yes witlh >0) and g strictly convex (yes as soon

asr >H¢, hence (39)).

From now on, it is assumed that (39) is satisfidten, the function between brackets in (36) is also
coercive and semi-lower continuous, hence ensuxigience of a minimum. Finally, there exists a

unigue minimum ifr >H°.

Let us now focus on the numerical integrationlffgbat is the solution of (37) for a given value
of T=A+r[u], i.e. the input quantity of the constitutive laWhanks to the existence and
uniqueness of the solution, it is interesting ketadvantage of the characterisation (36) in teyns
subgradient, the expressions of which are give{8#) to (35). Solving the problem in each case,

four alternatives are retrieved:

if k=0 and |7, <o®=y'(0 : perfect adhesion

$=0 (40)

if k>0 and ||, <rk: crumpling

5= (41)

if k>0 and rk< ||, <rk+y’(k): unloading

5= k) 42)
Il
— if rk+y'(k)<||,: damage
525 AT 8, solution of y(&,) + & . (43)

el
.

Actually, the distinction whethek = 0 or not is unnecessary since (40) appears as &abpase of

(42).

In conclusion, expressions of the solutdr{output of the constitutive law) are provided 40)-

(43) as functions of the input:k+r[[u]]. They correspond to the different regimes of the
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constitutive law. No numerical approximate solutismequired, since the only equation to solve, in

(43), is piecewise linear.

3.3 Numerical validation by comparison to a clostatm solution

To validate the implementation of both the mixedté element and the cohesive constitutive
law, a test problem is proposed which admits aetléerm solution. It consists of an elastic beam
clamped at one end, submitted to a prescribedderdisplacement (no bending) and glued on a
rigid plane surface, see figure 4a. The glue isetied by the Talon — Curnier law reduced to mode
Il. The description of the problem is one dimensiohree areas are observed which move with
increasing prescribed displacement and correspornmeitfect sticking (no debonding), a cohesive

zone and a free surface (zero cohesive force).

As the loading displacement is monotonous, nollocdoading is expected. Therefore, the

displacement of the membrane is a minimum of theviang energy:

L

2 L
min §J(%) dX+JL|J(|U|)WdX
udKA(U) 2 dx ) (44)

0

KA(U)={uoH*(JoL]); u(0F 0 andu(L) U}

where E is the elastic stiffness$ the cross section ared, the beam lengthw its width, u the
(horizontal) displacement field) the prescribed displacement at the end of the kwsamp the
cohesive energy (27) relying on the characteristigth & and the fracture energg°. To focus

on significant features, the variables are norredlis

__u - U
u=— ; U=—
o) & (45)

The minimisation problem (44) is then equivalent to

L

IV N
| 3 (&) o [ne= "
KA(U)={aoH*(JoL[); a(0F 0 andu(Ck U}

The first order optimality conditions are necessamgditions fort to be a minimum:
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Td;‘;;fmn_(n) . @ c'(JoL]) ; a(g o ; u(® O (47)

where T is the (normalised) cohesive force density, defittgough the equilibrium equation. Note
that the continuity of the derivative ai is obtained thanks to the bounded character of the
subgradientd, hence precluding any punctual cohesive force.ti@nbasis of (32)-(35), the
subgradient is actually equal to:

[-1 1] if T=0

or (u) =1{(1-[uf) sgra} i o<[uj<1 (48)

{4 it [a]>1

One can recognize the graph of figure 2b. The ®wlus then composed of several branches on

contiguous intervals witlC' continuity. Each branch belongs to one of the ibbssegimes:
— Perfect bonding
u=0 (49)

— Progressive damage, i.e. cohesive zone

U(X)=Acosx +Bsirx + 1 for > 0 L
o o n o _ AOR, BI R, [a(g 1 (50)
U(X)=Acosx+Bsirx—-1 fort< 0
— Complete decohesion
U(x)=Ax+B  AOR, BI R, (3} 1 (51)

In order to simplify the analysis, we assume froaw on that the beam is sufficiently long,
namely L >U -1+ 172, and that the loading is high enough, Le>1. In that case, it is easy to
show that there exists three areas, which correspespectively to (49), (50) and (51), from left to
right. Thanks to theC' continuity and the boundary conditions, the camstaan be determined,

leading to the following expression, with the length of the beam yet left unaffected by

decohesion:
0<xX<b u(x)=0 T(X)=0
b=L —(U —1) - b <X <b 2 u(x) =1 —cos(x —b) 1X) = coéx —b) (52)
6+ggst U(x)=x-L+0 1(X) =0
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As can be observed, the cohesive force dersibelongs to the spade but it is not continuous at
X=D.
The couple(U,T) is one possible solution of the problem (47). idev to enhance the potency

of the test case, a sufficient condition for thécstconvexity of the energy in (46) is exhibitexh

that (U,T) is actually its only minimum. First, the normatisenergy in (46) is rewritten as:

C C L C

%K%;jz dY+JL n(@)ox = JE(‘?’—;T —%Uz:ldi +Hﬁ(a) +%Uz}d7 (53)

0

‘]eI(U) Jfr (U)

where >0 is a parameter left undetermined. The idea cansisttaking advantage of the
convexity of the strain energy to compensate thk ¢d convexity of the fracture energy. Thus, the
first term J, is a quadratic form. Its convexity is related t® positiveness; computation of the
Rayleigh quotient shows tha, is convex as soon g3< T[Z/EZ (first eigenvalue). The convexity
of the second ternd, is established by considering its integrand: tisaiokthe expression (45) for
M, J. is strictly convex as soon gs>1. Consequently, the energy is strictly convex asd i

minimum unique ifL.< 12/L?, that isL < .

A computation of the beam is performed with=1.5 and m>L >U -1 +1t2, so that(T,T)
defined in (52) is the unique solution to (46). Tinesh size is set such that 25 finite elements
discretise the cohesive zone (of normalised lengt), while the penalty coefficient is taken equal
to 100x H® = 10C. The results plotted in figure 4 are in good agreet with the solution (52), even
though oscillations of the Gibbs type are obseraemind the discontinuity of the cohesive force.
Although the area over which they spread goes o irelength with mesh refinement, they do not
vanish in amplitude I but not pointwise convergence). In conclusion, itn@lementation is

validated. Questions of convergence are the purpbfe next section.

4. NUMERICAL APPLICATIONS

The section aims at demonstrating the capacitietheo mixed interface finite element. Two
structures are studied. The first one is bidimemaian order to enable an analysis of convergence

rates with mesh refinement. The second one istqtisé and illustrates the contributions of the
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interface elements in 3D. The numerical simulatibase been performed with the open source

finite element software Code_Aster [42].

4.1 Measure of convergence rates

4.1.1 Test problem

Several questions have been raised in the matfeainsttudy: convergence of the displacement
field and of the cohesive forces with respect talmefinement, sensitivity to the penalty term and
its influence on the solution algorithm. Some nup&rinvestigations are led in this sense. They
are based on the numerical study of sandwich babmsnterface of which obeys the Talon —
Curnier law, see figure 5a for the geometry andnia¢erial parameters. In order to avoid that the
convergence rates be polluted by possible singidsyia very smooth loading is applied, so that the
optimal theoretical convergence réjk(hz) in elasticity (withh the size of the quadratic triangles)
is almost reached: indeed, the observed numermalergence rate for the stress fieIcD%h“’z)
in elasticity (i.e. without any interface). Moreegisely, the loading consists in the following body
forceb:

b(x,y)= y[Zb‘” (x,y)e, +0.08b(x ,y)ey} (in N/mm
O<sy<l ; -L=<x<sL ; -h<ych

(54)

where y denotes the load magnitude’® the unit vertical part corresponding to a “thresnp
bending” andb®” the unit horizontal part corresponding to torqubath ends, as pictured in red in
figure 5a. Their expressions are given below amdesented in figure 5b for the right part of the
beams (symmetry):

b®(x,y) :{1—tanl'%|j sin@ - [ T tanlll'#j sﬁ%

(55)
b® (x,y) = [1— tanh- ;]|X|j sinznéy>

Thanks to the symmetry, only one half of the gtreee (right) is computed. The global response
of the structure is plotted in figure 6b in ternfdtwe vertical displacement of point P (top right i
figure 5a) versus the loading magnitugeanging from 0 to 1. A regime of initiation, folleed by
an instability (crack jump) and then a progresgwepagation of the interfacial crack can be

observed. The stress field (longitudinal and shiar) =1 is plotted on the deformed geometry in

22



figure 6a, where the crack is apparent. Finallg, ¢tbhesive forces are plotted in figure 6¢. Three
zones can be distinguished, from left to right: egibn (undamaged), cohesive zone and fracture.
On the contrary of the test-case in section 3.8pjtears that the cohesive forces are continuous, s

that there is no more oscillations.

4.1.2 Convergence with respect to the mesh size

In order to estimate the convergence rates, aeseguof meshes is built, each one being
embedded in the former, with element size twicellemaFive levels of meshes are considered to
measure convergence rates, see figure 5c forumtrakion of the two first levels (in red and black
As no closed-form solution is available for the lgeon, the convergence rate is estimated by
comparing two successive solutions. Consider fstaimce the sequence of solution stress fie|ds
with n the level of mesh refinemenh(=h,2™" is the corresponding size of the finite elements).

Then the following estimate is used:
|o, = o, :O(hf) = |0, -0 :O(hf) (56)

The gaps between two successive solutions areeglatt figure 7a and figure 7b, respectively
||Gn+1‘°n||Lz(Q) for the stress field anﬁxnﬂ—xn”Lz(r) for the cohesive force field. In both cases, the
convergence is observed. The convergence sate equal to 1.9 for the stress field: the mixed
interface finite elements do not introduce any ddgtion of the convergence compared to the
elastic problem. And the convergence rate for thteesive force is equal to 1.15. These results are
in reasonable agreement with the theoretical pitpos in [18], thanks to the fulfilment of the

LBB condition.

4.1.3 Influence of penalty

In order to show that the solution does not dependthe penalty parametar, at least
asymptotically, three values of have been considered:[0R= {10H°, 100H° , 100H °},

where H® is the softening modulus introduced in (39). Weatkthat the penalty term reads:
r 2
P=|=(|u]-0) dI 57
=] 5l11-9) 7
a

The convergence of the penalty term with the mézsh is showed in figure 7c: it vanishes with

mesh refinement. It proves that the space for tgrdnge multiplier is rich enough to ensure alone
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fulfilment of the constraintﬂu]]:a. Indeed, the maximal gap between solutions obdainih
different penalty parameters in the sampling Retalso goes to zero with mesh refinement, see
figure 7d:

max
rOR
r'orR

Gn (I’) ~On (I")
A, (r) —h, (I")

LA(Q) M- o

(58)

max
rOrR
r'orR

L(r) Ao

It means that the sensitivity with respect to teaaity parameter vanishes with mesh refinement.

However, the penalty parameter may have an infleeon the convergence of Newton
algorithm, as shown in figure 8. Actually, the udea line-search technique has been necessary to
enforce the convergence of the algorithm with 1800 On the contrary, we have observed that
the line-search slowed down the convergencerfer HI0in particular for the finest mesh.
Finally, it appears that using the intermediateugalr = 100H® results in a rather stable
convergence whatever the mesh size and is notrpediby the line-search (which could reveal
necessary to overcome possible instabilities). slt difficult to generalise the proposition.
Nevertheless, it seems that 190 introduces a sufficient level of coercivity in erdto avoid
that Newton algorithm escapes its attractor, withoesulting in ill-conditioned problems.

Additional simulations would be necessary to canfthis rule of thumb.

4.2 Application to a 3D structure

Finally, the study of a 3D structure is perfornmteddemonstrate the full applicability of the
mixed interface finite element. As previously, tteucture is made of glued sandwich beams, as
described in figure 9, where the interface is dbsdr with the Talon — Curnier law. The loading
consists in bending prescribed displacements indingctions. More precisely, the left end of the
upper beam is free, its right end is clamped exéapthe longitudinal displacement which must
remain a constant field along the cross sectiany#iue of which is free:

ou

ou
upper beam: —(L =
pp ay( Y 2) 5

(Lyz)= 0 ;v(Lyz)= 0 ;w(Lyz)= (59)

The special condition oo sets the rotation to zero but enables a longialdirsplacement in order
to limit o,, shear. The right end of the lower beam is fredlewts left end is totally submitted to

prescribed displacements:
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lower beam:u( Oy z)= 0 ;v( G z)=yx 1mm ;w( 9,z) =yx 1n (60)

where y denotes again the normalised load magnitude. Agtule vertical bending is expected
stable because of contact conditions (a suddetufeof the interface does not release the amount
of elastic energy since the beams remain partiadlyt). On the contrary, the horizontal bending is
expected unstable because the beams are fregidvedheir straight shape in this direction inecas
of total fracture of the interface. Therefore, tt®sen loading is thought to trigger the following
features: active contact conditions along a mosgimdgace, coupled shear — opening fracture modes,
full 3D mechanisms resulting in non straight cohesiones inside the interface plane and a final

global instability of the structure.

The spatial discretisation of the beams is baseduadratic regular hexahedra of edge length
6.25 mm. The interface is discretised by meanhefdorresponding mixed interface elements. It
results in about 300 000 degrees of freedom, witiakes the structure realistic and representative
of real industrial problems. The penalty parameteset to 100H° on the basis of the experience
acquired in section 4.1. Regarding the loading &mws, a monotonous control of the magnitude
is not possible because of the expected instabilityavoid a dynamic simulation, a path following
method is applied, as proposed in [49]is controlled so that during each increment, thmage
(i.e. the normalised cohesive eneng)//GC) progress at most of a given quantity set equéltan
the simulation. It means that for each incrememeyd exists a point of the interface where the
damage increases of 0.1; elsewhere, the damagmaseis less than 0.1. The computation is led up
to complete fracture of the interface. 75 load énecents are required, each of them with 4 Newton
iterations in average: the convergence of the solwlgorithm is satisfactory, both in stable and

unstable regimes.

The global response of the structure figure 1@wshihe expected phases: progressive damage of
the interface followed by an unstable propagatiprtaicomplete failure, characterised by a sharp
snap back of the force — displacement curve. lulshbe noted that no small spurious snap-backs
appear, on the contrary of what is observed witbhalsnterface elements [43,44]. Actually,
embedded discontinuity finite elements do not eitbghibit such spurious snap-backs [41].
Therefore, it seems reasonable to relate them dop#nalty regularisation of initial adhesion,

another reason to enforce perfect initial bondihgo load levels are selected for the oncoming
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post-treatments: one during the progressive prdpagdy =1, stageA on the curve), the other

corresponding to the peak loag#2.9, stageB on the curve).

The deformed shape and the longitudinal stregsrepresentative of bending are pictured in
figure 11a. They illustrate the distribution ofests responsible for the decohesion: the free eihds o
the beams tend to retrieve their straight shapesirfral elastic energy) and thus apply shear and
opening forces on the interface. Moreover, the acnbf the lower beam on the upper beam
enforces a global (vertical) bending, whateverdtate of the interface. The damage field along the
interface qJ/G° is plotted in figure 11b. Thanks to the exact erdment of initial adhesion and
ultimate decohesion, a clear identification of ttwhesive zone is possible as the points where
0< qJ/G° <1. It appears that the crack front adopts a comgeape which evolves during
propagation, due to 3D effects. At last, figure Mictures the proportion between opening and
shear modes inside the cohesive zone on the asis fmllowing local indicator:

2
m= M (61)
[t

The indicator takes the value O for pure openinglenand 1 for pure shear mode (with possible
compression). Of course, a value in-between deretasnbination of both modes. It appears that
the full range of solicitations takes place in #uulation, even though shear mode is dominant,

especially when the peak load is reached.

Finally, this 3D simulation seems to prove thakewl interface finite elements are sufficiently
robust to address industrial applications and pl®\several kinds of pertinent information about

the fracture process.

5. SUMMARY

A mixed interface finite element has been propdsethiodel cohesive zones along given paths,
in full compatibility with usual 3D finite elementsr the bulk behaviour. Its unknowns are nodal
displacements on both lips of the cohesive crackraotdal Lagrange multipliers, interpreted as the
surface density of cohesive forces. The Lagrangfathe problem is then augmented in order to

gain a convexity property. In that way, integratairthe cohesive law is reduced to the computation

26



of local displacement discontinuities correspondmgpcal cohesive forces, a problem that admits a

unique solution, whatever the cohesive forces.

In conclusion, this approach suffers from thedaiing limitations and drawbacks:

» Because the method relies on interface elemergdtential crack paths have to be postulated
a priori.

« Additional degrees of freedom are introduced, gpoading to the cohesive forces. However,
their number remains low since they are restridtedhe potential crack paths, which are

surfaces (resp. lines) in 3D (resp. 2D).

* The introduction of Lagrange multipliers leads tmixed problem: the solution is characterised
as a saddle-point and no more a minimum as innitialienergetic formulation. Consequently,

some tools of mathematical optimisation are no naveglable to solve the problem.

« The Lagrangian has to be augmented in order to @&mtal convexity property. This implies
the introduction of a penalty parameter, withoutsstvity for the continuous problem but
which may affect the results of the spatially déerproblem. Nevertheless, this dependence
vanishes with mesh refinement. Moreover, the nurakexamples show that this sensitivity

remains small.

» The local integration of the constitutive equatioglges on the expression of the cohesive law in
the reverse format [cohesive forces displacement discontinuity], which is unusual when

considering interface elements.

Conversely, the limitations and drawbacks are caalanced by the following attractive
properties:
* No regularisation (penalty) of the cohesive lawagquired, regarding namely initial adhesion,
contact conditions and possibly rigid unloadingphrticular, this avoids ill-conditioning. It is
illustrated by an application to the Talon — Curne@hesive law which exhibits regimes of

perfect adhesion, rigid unloading and crumpling.

» The choice of a quadratic discretisation for thepllicements and a linear discretisation for the
Lagrange multipliers fulfils the LBB condition. lirn, it ensures convergence of the solution

with mesh refinement in terms of displacements arsive forces, as checked numerically.
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» The convergence rates that would be obtained withay interface is not perturbed by the
presence of mixed interface elements.

« Thanks to the saddle-point characterisation, timsistent tangent matrix is symmetric.

» The proposed element is fully compatible with commsolution algorithms such as the Newton
method, line-search accelerations, path-followeahhiques, etc. This has been proved through

2D and 3D computations which demonstrate the agipility, the robustness and the efficiency
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11.
12.

13.

14.

15.

16.
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of the mixed interface element.
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Figure 1 - Discretisation by interface finite elements

figure 1 — Discretisation by interface finite elements



Figure 2 - Talon - Curnier cohesive law
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figure 2 — Talon - Curnier cohesive law




Figure 3 - Solution of the constitutive equation

tension stress
A

c

Q

adhesion

opening
| d

contact

figure 3 — Solution of the constitutive equation



figure 4 - Validation test: an elastic beam glued on a rigid sur
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figure 4 — Validation test: an elastic beam glued on a rigid surface



figure 5 - Description of the 2D sandwich beams problem
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figure 5 — Description of the 2D sandwich beams problem




figure 6 - Decohesion of the 2D sandwich beams
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figure 6 — Decohesion of the 2D sandwich beams




figure 7 - Sensitivity to mesh size and penalty parameter
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figure 7 — Sensitivity to mesh size and penalty parameter



figure 8 - Convergence of Newton algorithm with respect to mesh
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figure 8 — Convergence of Newton algorithm
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figure 9 - Description of the 3D sandwich beams problem
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figure 9 — Description of the 3D sandwich beams problem




figure 10 - Global response of the 3D sandwich beams
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figure 10 — Global response of the 3D sandwich beams



figure 11 - Decohesion of the 3D sandwich beams : local analyses
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figure 11 — Decohesion of the 3D sandwich beams : local analyses



table 1 - Spatial discretisation

Field Shape functions | Unknowns Interpolation Finite element

displacement uelf,|cont-P2 [ N(x)]|nodal {U}] u(x)=[N(x)]{u} M

displ. discontinuity [u] [cont-P2 [D(s)]|nodal {U}| [u](s)=
Lagrange mult. ke £,|cont-Pl [L (s)] nodal {A}] A(s)= [L(s)] {A} l

N
displ. discontinuity & € D, | disc-P1 Gauss points 8, 6(s 8) =9, middle plane

table 1 — Spatial discretisation




