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• Finite volume three-dimensional Navier-Stokes modeling of water wave propagation
• Steep wave generation and propagation with Arbitrary Lagrangian-Eulerian scheme
• Use of Compatible Discrete Operators shows improved accuracy and stability
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ABSTRACT
For reasons of efficiency and accuracy, water wave propagation is often simulated with potential or
inviscid models rather than Navier-Stokes solvers, but for wave-induced flows, such as wave-structure
interaction, viscous effects are important under certain conditions. Alternatively, general purpose
Navier-Stokes (CFD) models can have limitations when applied to such free-surface problems when
dealing with large amplitude waves, run-up, or propagation over long distances. Here we present an
Arbitrary Lagrangian-Eulerian (ALE) algorithm with special care to the time-stepping and boundary
conditions used for the free-surfaces, integrated into Code_Saturne, and we test its capabilities for
modeling a variety of water wave generation and propagation benchmarks, and finally consider inter-
action with a vertical cylinder. Two variants of the mesh displacement computation are proposed and
tested against the discrete Geometric Conservation Law (GCL). The more robust variant, for highly
curved or sawtoothed free-surfaces, uses a Compatible Discrete Operator scheme on the dual mesh
for solving the mesh displacement, which makes the algorithm valid for any polyhedral mesh. Results
for standard wave propagation benchmarks for both variants show that, when care is taken to avoid
grids with excessive numerical dissipation, this approach is effective at reproducing wave profiles as
well as forces on bodies.

1. Introduction

There are many applications to models of water waves,
from understanding tsunami hazards, to computing the forces
on offshore structures, to understanding the performance of
different ship designs. Similarly, there are many different5

methods for modeling water waves; a recent summary was
given by [35]. Because of the vast horizontal scales required
to study ocean waves, often a simplified approach is used,
such as potential flow, with either nonlinear or linearized
free-surface boundary condition, or a depth-averaged approach,10

such as shallow water or Boussinesq equations. Such spe-
cialized models efficiently propagate waves over long dis-
tances without excessive numerical dissipation.

A direct approach to the physics would be to solve the
full three-dimensional (3-D) Navier-Stokes equations, in a15

domain covering both the water and air phases. In fact, some
of the first water wavemodels solved theNavier-Stokes equa-
tions in this way [12], using the Marker And Cell (MAC)
method [26]. Many different methods for tracking the free-
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surface have been developed, but variations of the Volume-20

Of-Fluid (VOF) technique [30] have become quite popular
for coastal engineering, using it for wave modeling [e.g., 33]
and wave-structure interaction [e.g., 14], as well as many
others applications. Such approaches have the advantage of
being able to treat breaking waves, which is an important but25

complex issue ([e.g., 27]). One major drawback is they re-
quire finer computational domains and tracking the interface
without diffusion is a challenge. For a recent discussion of
wave propagation benchmarks for VOF codes, see [51].

Alternatively, one can use a boundary-fitted domain, and30

move the computational domain at each time-step [29]. Such
an arbitrary Lagrangian-Eulerian (ALE) approach will be
considered here. This is used in many ocean models [e.g.,
Telemac3D; 28], or non-hydrostatic wave models [38], and
these are able to solve such diverse applications as landslide-35

generated tsunamis and surf-zone wave propagation. Many
models that use a boundary-fitted domain, however, are based
on sigma-coordinate grids in the vertical, which can have
some limitations for dealingwith complex grids or immersed
bodies. These limitations are removed with the present ap-40
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ALE for waves

proach, where a more general mesh movement is solved with
specific free-surface condition for the mesh displacement.
AlthoughALE cannotmodel the details of overturningwaves
like a VOF approach, such non-hydrostatic wave models are
able to incorporate energy dissipation in order to represent45

breaking effects [53], and examples of this will be shown
below.

In the context of ALE solvers, there have been many de-
velopments (see e.g., [17]). The sigma-coordinate grid men-
tioned above corresponds to a special case of the simplest50

mesh regularization approach, that of a transfinite mapping.
To apply to more general meshes, a common approach that
will be discussed further below is a Laplacian smoothing ap-
proach (e.g., Benson [6]) where a Laplace or Poisson equa-
tion is solved for the mesh velocity in the interior of the do-55

main. One can consider other node solvers, and there ex-
ist more complex, high-order shock-capturing schemes (e.g.,
[8]). As well, general ALE solvers often consider adaptive
meshes, with a remeshing of the domain during the simula-
tion, in order to handle largemesh displacements (e.g., [43]).60

Such developments however can be time-consuming (due to
additional equations to solve), and are unnecessary for ocean
wave problems, as we consider waves that are not overturn-
ing. As a result, we consider only the essential aspects of
integrating an ALE scheme into an existing Navier-Stokes65

solver and the resulting performance for ocean wave appli-
cations. For this, it is important to consider the discrete Ge-
ometric Conservation Law (GCL), which states that the vol-
ume change of a cell during a timestep should be equal to the
volume swept by the cell boundaries during that timestep.70

The GCL is critical to ensure that the algorithm is robust
(e.g., conserves mass and energy) for long time simulations
[e.g. 48, 52, 21, 45].

As a result, we consider below the numerical details re-

quired to develop a robust ALE finite volume algorithm inte-75

grated in the open-source CFD solver Code_Saturne [2] for
version 6.1 and newer, with particular attention to the dis-
crete GCL. Code_Saturne uses collocated finite volumes to
solve the Navier-Stokes, Reynolds Averaged Navier-Stokes
(RANS), or Large Eddy Simulation (LES) equations, and80

has been used extensively in the industry, from nuclear ther-
mal hydraulic application [see 24, for a recent application],
atmospheric modeling [e.g 3], electric arc modeling [e.g 13],
fire modeling [39], ventilation, combustion (e.g., coal, gas,
biomass, [16]) and has also been used previously for wave-85

current interaction [e.g. 47, 5].
The paper is organized as follows. Before passing to

the specific case of incompressible flows of constant den-
sity used in all applications here, in section 2, we present
the governing equations of the finite volume space and time90

discretization for fixed meshes in terms that are valid for
both incompressible or compressible flows. Then in sec-
tion 3 we present the ALE algorithm and specify the free-
surface boundary condition, with special care on the time
stepping scheme to conserve uniform velocity fields. The95

original use of cell-based, for fluid quantities, and vertex-
based solvers (on the dual barycentric mesh), for the mesh
displacement, is also presented, and this improves on vol-
ume conservation. In order to facilitate very steep waves, a
filtering of spurious waves of length smaller than the mesh100

resolution is also introduced. Finally, in section 4, we con-
sider numerous validation cases. This is first done with flow
through a valve, forced by a piston, showing that the velocity
field remains accurate with a moving mesh, then by looking
at standing waves of a range of amplitudes to verify volume105

conservation and model stability, a critical point for moving
mesh algorithms. Then, satisfied that the model is robust, we
consider a number of different applications, including vis-
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cous damping of standing waves, solitary wave propagation,
wave propagation over a submerged bar, wave forces on a110

monopile, and the modeling of a novel laboratory setup for
long wave generation. This ensemble of test cases demon-
strates the ability of this approach to handle a wide variety
of test cases of interest to the ocean modeling community.

2. Methodology115

2.1. Governing equations

To describe the governing equations, we begin with the
conservative Cauchy momentum equations written in vector
notation:

)�
)t
+ div (�u) = Γ,

)
)t
(�u) + div (u ⊗ � u) = div (�) + Su + Γuin, (1)

where u represents the fluid velocity, � is the density of the120

fluid, � is the stress field, Su is a field of source terms (e.g.,
gravity, Coriolis, additional head losses), Γ a possible mass
source, and uin the velocity of a possible injected fluid. For
sake of simplicity, Su and Γ will be set to zero hereafter.

The stress tensor � is decomposed into an isotropic com-125

ponent, called the pressure p, and the deviatoric component,
�:

� = −p1 + �, (2)

and thus the Cauchy equations are:

)�
)t
+ div (�u) = 0,

)
)t
(�u) + div (u ⊗ � u) =−∇p + div

(

�
)

.
(3)

For a Newtonian fluid, the constitutive law connecting

the stress tensor to the deviatoric part of the deformation rate130

tensor, given as S ≡ 1
2

(

∇ u + ∇ uT
)

, is determined as:

�
(

u
)

= �
(

∇ u + ∇ uT
)

+
(

� − 2
3
�
)

tr
(

∇ u
)

1, (4)

where � is the volume viscosity, usually neglected and there-
fore omitted hereafter in this article.

The combination of terms in the Cauchymomentum equa-
tions, Eqs. (1), and a Newtonian fluid, Eq. (4), gives the135

Navier-Stokes equations.
When � is considered constant, flow is incompressible

and the mathematical model is complete, otherwise the sys-
tem should be supplemented with an energy equation and
an Equation Of State (EOS) between density, pressure and140

energy must be specified [see e.g 15]. Turbulent flows can
also be considered subtracting the Reynolds stresses (for the
RANS approach) or the sub-grid stresses (for the LES ap-
proach) from the Cauchy stresses. In this article, only in-
compressible constant density flows will be considered.145

2.2. Space and time discretization

In this section, the time discretization is detailed on a
motionless meshed domain, and some insight into the space
discretization is given. A finite volume scheme where the
velocity and pressure are stored at the cell centers, xc (see150

Fig. 1), is used.
Integrating conservative Eqs. (3) both in space and time

leads to the definition of the extensive quantities:

Ωc = ∫Ωc
dΩ,

Mc = ∫Ωc
�dΩ,

Q
c

= ∫Ωc
�udΩ,

(5)
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Figure 1: Labeling of information used for a mesh. In green,
xci is the barycenter of one cell ci, whereas xcj is the one of
cj . Each face f is split into portions of faces associated to a
vertex. The portion of face f associated to a vertex v is drawn
in solid orange, and is defined by xf , the barycenter of f , the
middle of the two edges of f passing through vertex v, and xv
itself. The dual barycentric cell around a vertex v is defined
by connecting surrounding cell centers, face centers and edge
centers.

for cell volume Ωc , cell massMc , and cell momentum Q
c
.

As for the intensive quantities, let �c be considered the cell-155

averaged density, and let uc be the density-weighted cell-
averaged velocity, defined as:

�c =
Mc
Ωc

,

uc =
Q
c

Mc
.

(6)

We denote the exponent (.)n as the state at time-step tn, and
similarly (.)n+1 as the state at time tn+1, which is separated
from tn by a time interval Δt. Time-integrals over Δt are160

denoted by (.)|n+1n ≡ 1
Δt ∫

tn+1

tn
(.)dt.

Integrating the mass equation of Eq. (1) over cell c and
time interval Δt and using Gauss’ theorem gives:

Mn+1
c −Mn

c + Δt
∑

f∈c

(

� u
)

f
|

|

|

n+1

n
⋅ Sf = 0, (7)

where c is the ensemble of all the planar polygonal faces
of cell c and Sf is the outward surface vector. Note that165

the quantity (.)f coming from the integration of the diver-
gence is defined as the average (in space) of (.) over the face:
(.)f ≡ 1

Sf ∫f
(.)dS, and its expression with respect to the

cell values will be given by the space discretization.
Performing the same computation for themomentum equa-170

tion of Eq. (1) gives:

Qn+1
c

−Qn
c
+Δt

∑

f∈c

(

u ⊗ � u − �
)

f

|

|

|

|

n+1

n
⋅Sf = 0. (8)

There are many schemes for solving the Navier-Stokes
equations with the finite volume method [49]. Here, the
Navier-Stokes equations are solved in two steps: a predic-
tion step for the velocities from the explicit pressure field,175

and a correction step, where the continuity equation is used
to calculate a change of pressure. The correction step adjusts
the mass flux to ensure mass conservation and then update
the velocity field. Sub-iterations for these two steps is also
possible to perform a Pressure-Implicit with Splitting of Op-180

erators (PISO)-like algorithm [32]. These iterations will be
denoted below by the superscript k, starting at 1.

For the prediction step, by default, an implicit Euler first-
order scheme is used, where the viscous shear stress is time-
implicit, the pressure is time-explicit, and the convective term185

is linearized and semi-implicit as follows:

Ωc
(

�n+1,k−1c ũkc − �
n
cu
n
c

)

+Δt
∑

f∈c

ũkf

(

(

� u
)

f
|

|

|

n+1,k−1

n
⋅ Sf

)

−Δt
∑

f∈c

(

�
(

ũk
))

f
⋅ Sf

= −Δt
∑

f∈c

(

pf
|

|

|

n+1,k−1

n

)

Sf ,

(9)
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where ũk is the predicted velocity field to be solved, and the
mass flux (

� u
)

f
|

|

|

n+1,k−1

n
⋅Sf is initialized by

(

� u
)

f
|

|

|

n+1,0

n
⋅ Sf

=
(

� u
)

f
|

|

|

n

n−1
⋅ Sf , p|n+1,0n = p|nn−1, �n+1,0 = �n. Different

convective schemes for ũkf have been implemented, includ-190

ing a pure upwind scheme, a Second-Order Linear Upwind
(SOLU), or a centred scheme with an optional slope test lim-
iter. This last approach is the one used for all test cases pre-
sented in this paper. The transpose of the velocity gradient
and the isotropic term are in fact implicit in time, with an195

iterative process used to reconstruct terms due to the non-
orthogonalities of the mesh if present [2].

The unsteady term of Eq. (9) is rewritten using the con-
servation of mass:

Ωc
(

�n+1,k−1c ũkc−�
n
cu
n
c

)

= Ωc�nc
(

ũkc − u
n
c

)

− Δt
∑

f∈c

ũkc

(

(

� u
)

f
|

|

|

n+1,k−1

n
⋅ Sf

)

.

(10)

(As mentioned above, although the density is taken to be200

constant in this paper, the density could be updated through
an equation of state, depending on scalars such as temper-
ature or salinity; if so, this modification would be applied
here, before the correction step.)

During the correction step, a simplifiedmomentum equa-205

tion is solved under the mass balance constraint:

�n+1,k−1
un+1,k − ũk

Δt
+ ∇�k = 0,

(

�u
)

f
|

|

|

n+1,k

n
⋅ Sf =

(

�n+1,k−1un+1,k
)

f ⋅ Sf ,

(11)

Ωc
(

�n+1,kc − �nc
)

+ Δt
∑

f∈c

(

(

�u
)

f
|

|

|

n+1,k

n

)

⋅ Sf = 0,

where �k = p|n+1,kn − p|n+1,k−1n is the pressure increment.

From Eq. (11), a Poisson equation is written for �k:

−
∑

f∈c

(

Δt∇�k
)

f ⋅ Sf = −
∑

f∈c

(

�n+1,k−1ũk
)

f
⋅ Sf

−Ωc
�n+1,kc − �nc

Δt
.

(12)

ATwo-Point FluxApproximation (TPFA)with non-orthogonal
reconstruction is used to discretize the Laplace operator on210

�k [20], and the Rhie and Chow filter can be added to the
right hand side of Eq. (12) [2]. See [22] for more details
about the reconstruction process. Note that the first line of
Eq. (11) is then used to update the cell velocity field un+1,kc .

3. ALE framework and free surface condition215

Next we consider the ALE formalism, and then present
the time-stepping scheme used, showing that volume is con-
served when considering mesh displacement in a single di-
mension.

3.1. Governing equations220

First it is necessary to formulate the equations governing
the conservation of momentum in the domain, Ω(t), which
moves in time. We denote the velocity of mesh displacement
field v (x, t), for points x (x0, t

) originally located at x0 and
moving in the domain. The mesh velocity of Ω(t) is thus225

written:

v
(

x, t
)

=
)x

(

x0, t
)

)t
. (13)

We now consider a sub-domain Ωc(t) of Ω(t). This do-
main corresponds to a cell of the mesh previously described.
Using the Leibniz integration rule (or Reynolds transport
theorem), we can evaluate the variation of an arbitrary ten-230
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sor field v in Ωc(t) over time (here noted as a tensor of order
one, i.e., a vector, but the Leibniz integration rule is true for
any order). This is written as:

d
dt ∫Ωc (t)

vdΩc = ∫Ωc (t)

)v
)t
dΩc +∫)Ωc (t)

v⊗v ⋅dS. (14)

It is important to note that d
dt represents the total derivative

of the integral quantity, that follows the movement of Ωc(t).235

Applying the Leibniz integral rule, Eq. (14), to the unity
scalar field gives the way cell volumes evolve:

d
dt ∫Ωc (t)

dΩ = ∫)Ωc (t)
v ⋅ dS. (15)

This last equation (in a form integrated in time) is often called
the Geometrical Conservation Law (GCL) and will be de-
scribed in more detail in §3.2.240

Performing the same calculation for the variation ofmass
d
dt ∫Ωc (t) �dΩ in the cell c and using the first line of Eq. (1)
we obtain:

d
dt ∫Ωc (t)

�dΩ + ∫)Ωc (t)
�
(

u − v
)

⋅ dS = 0. (16)

Applying again the Leibniz integral rule (14) to establish
the conservation of momentum in the domain Ωc(t):245

d
dt ∫Ωc (t)

�udΩc = ∫Ωc (t)

)�u
)t
dΩc+∫)Ωc (t)

�u⊗v⋅dS. (17)

We apply the Cauchy momentum equation to replace )�u
)t

of
Eq. (17), which gives us:

d
dt ∫Ωc (t)

�udΩ + ∫)Ωc (t)
u ⊗ �

(

u − v
)

⋅ dS

= ∫)Ωc (t)
� ⋅ dS. (18)

3.2. Space and time discretization

Let us start by integrating the volume conservation Eq. (15)
over a time step Δt:250

Ωn+1c − Ωnc = ∫

tn+1

tn

(

∑

f∈c
∫f
v ⋅ dS

)

dt. (19)

For calculating the fluxes present in Eq. (19), we must de-
termine which mesh we will perform the calculations on,
whether the mesh Ωn, or on Ωn+1, or on several meshes at
intermediate times between Ωn and Ωn+1.

If themesh displacement is one-dimensional, as for smooth255

free-surface applications where the movement of the mesh
can be limited to the same direction as gravity (typically ver-
tical), without overturning, v = wez, the mesh velocity flux
through cell faces can be discretized exactly as:

Ωn+1c − Ωnc = Δt
∑

f∈c

vf
|

|

|

n+1

n
⋅ Snf (20)

=
∑

f∈c

(

xn+1f − xnf
)

⋅ Snf ,

where xnf is the face center of gravity at time tn. This choice260

will be motivated and justified in Section 3.3.
Time integration of the conservation of mass and mo-

mentum, Eq. (16) and (18), gives:

Mn+1
c −Mn

c +
∑

f∈c
∫

tn+1

tn

(

�
(

u − v
))

f ⋅ Sfdt = 0,
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Qn+1
c

−Qn
c
+

∑

f∈c
∫

tn+1

tn
uf

(

�
(

u − v
))

f ⋅ Sfdt

=
∑

f∈c
∫

tn+1

tn
�
f
⋅ Sfdt. (21)

It is important to remark here that �n+1c and un+1c correspond
to the mean density and the mean velocity of cell c at its265

location at time tn+1, and no reconstruction is needed.
At this point one must choose a discretization in time to

resolve the velocity field. As for the discrete volume con-
servation, Eq. (20), fluxes are written on the faces at time
tn.270

The prediction step for the velocity, which was written
for fixed meshes in Eq. (9), can now be written on moving
meshes as:

Mn
c

ũkc − u
n
c

Δt
−

∑

f∈c

�̃k
f
⋅ Snf

+
∑

f∈c

(

ũkf − ũ
k
c

)

(

�
(

u − v
))

f
|

|

|

n+1,k−1

n
⋅ Snf

= −
∑

f∈c

(

p|n+1,k−1n
)

f S
n
f . (22)

We see that pressure and friction forces are applied on the
mesh at time n and mass flux takes face displacement into275

account. Again, the conservation of mass was used to trans-
form the unsteady term and rearranged with the convective
terms.

The correction step of the velocity, Eq. (11), remains un-
changed on mesh at time tn. At the end of this process, we280

obtain un+1,kc , pc||n+1,kn , and the fluid mass flux (

�u
)

f
|

|

|

n+1,k

n
⋅

Snf . Then, the mesh velocity is computed and the mass flux
due to mesh displacement, (�v)f ||

|

n+1,k

n
⋅ Snf , is subtracted

from it. The total mass flux is used in any transport equa-
tion afterwards. We see here that the mesh velocity has to285

be defined at the nodes of the mesh to move them, and it is

also used when calculating the flux (

�v
)

f
|

|

|

n+1,k−1

n
⋅ Snf at

cell faces in Eq. (22). Face mesh-velocity is deduced from
mesh-velocities at the vertices by:

vf
|

|

|

n+1

n
=

∑

v∈f

vv
|

|

|

n+1

n
⋅ Sf,v

S2f
Sf , (23)

where Sf,v is the portion of face f vector associated to ver-290

tex v displayed in Fig. 1.

3.3. Verification of the discretized geometric

conservation law

The geometric conservation law (GCL) states that a vari-
ation of volume Ωc of a cell c between time-step tn and tn+1295

should be equal to the integral over this time interval of the
mesh velocity flux through faces of cell c:

Ωn+1c − Ωnc = ∫

tn+1

tn ∫)Ωc
v ⋅ dS dt. (24)

The time integration scheme used for the mesh velocity al-
lows one to rewrite the time integral as:

∫

tn+1

tn ∫)Ωc
v ⋅ dS dt = Δt∫)Ωnc

v|
|

n+1
n ⋅ dSn. (25)

It is clear that the condition in Eq. (24) does not hold true300

if the mesh velocity v contains more than one direction of
variation. The integration scheme must be modified if we
want to satisfy the GCL for mesh velocities which vary in
two or three directions [see 21, for a presentation of these
types of schemes and their properties].305

For one-dimensional mesh movement in z, one sees that
(

xn+1f − xnf
)

⋅Snf =
(

zn+1f − znf
)

Snf , z, where Sf, z is the z
component of S. Hence, volume of cell c can be computed
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as:

Ωc = ∫Ωc (t)
div (0, 0, z) (26)

=
∑

f∈c

zfSf, z, (27)

and one can prove that Sf, z is constant over time. Indeed,310

we can first remark that Sf can be defined using only sur-
rounding vertices of f , even if the face is warped. Formulae
proposed by [10] for a hexahedron can be extended for any
polyhedron. We can remark that Sf, x can be computed as
Sf, x = ∫f curl rx ⋅ dS = ∮)f rx ⋅ dl with rx = 1

2 (0, −z, y)315

such that curl rx = (1, 0, 0). Similarly, Sf, y = ∫f curl ry ⋅

dS = ∮)f ry ⋅ dl and Sf, z = ∫f curl rz ⋅ dS = ∮)f rz ⋅ dl

with ry = 1
2 (z, 0, −x) and rz = 1

2 (−y, x, 0) such that
curl ry = (0, 1, 0) and curl rz = (0, 0, 1). So Sf, z depends
only on the x and y components of the vertices of the sur-320

rounding edges of face f . Consequently, Eq. (20) is exactly
fulfilled if faces remain planar. If the mesh displacement is
2-D or 3-D, the mesh velocity fluxes must be split into two
or three steps to exactly conserve the volume [21]. Note also
that the calculation of Sf as a curl ensures that for any cell325

c,∑f∈c Sf = 0 even for warped faces.

3.3.1. Conservation of a uniform velocity field

The time integration scheme chosen has to have good
properties to maintain a uniform velocity field. This point is
key if we would like to have a stable scheme and verify the330

maximum principle [see 21].
Let us consider the numerical scheme of the prediction

step, Eq. (22), rewritten in velocity increment �u = ũk − un
for a constant pressure field:

Mn
c

Δt
�uc +

∑

f∈c

(

�uf − �uc
)

(

�
(

u − v
))

f
|

|

|

n+1,k−1

n
⋅ Snf

= −
∑

f∈c

(

unf − u
n
c

)

(

�
(

u − v
))

f
|

|

|

n+1,k−1

n
⋅ Snf .

(28)

We have not considered diffusive terms, but this does not335

change the conclusions here. From this, it is easy to verify
that for a uniform field un, the right-hand-side of Eq. (28)
is zero. For an upwind convective scheme on the velocity
increment, the system to solve is written as:

EM�un+1 = 0, (29)

withEMcc =
Mn

c
Δt

+
∑

f∈c

max
(

−
(

�
(

u − v
))

f
|

|

|

n+1,k−1

n
⋅ Snf , 0

)

,340

and for c ≠ j and f the face between c and j,
EMcj = −max

(

(

�
(

u − v
))

f
|

|

|

n+1,k−1

n
⋅ Snf , 0

)

. One can
note that EM is a M-matrix (for all c ≠ j, EMcj ≤ 0 and
for all c, EMcc >

∑

j
|

|

|

EMcj
|

|

|

) and is therefore invertible.
Just like with a uniform zero velocity, the numerical ver-345

ification of this assertion is presented in Fig. 2, where an
initial field u = ez1.0m∕s is not modified by the mesh dis-
placement imposed for all nodes by:

x − x0
L

= 4 sin
(2�t
T

) x0
L

(

1 −
x0
L

) z0
L

(

1 −
z0
L

)

⎛

⎜

⎜

⎜

⎜

⎝

1

0

1

⎞

⎟

⎟

⎟

⎟

⎠

,

(30)

where L = 1m is also the size of the square computation
domain, and T = 4 s is the period of the mesh velocity vari-350

ations.
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(a) Mesh and velocity field at initial time. (b) Mesh and velocity field after 1 s.

Figure 2: Conservation of a uniform velocity field despite a two-dimensional deformation of the mesh given by Eq. (30).

3.4. Vector solving of the mesh velocity

Up to this point, we have considered amesh velocity only
to verify the boundary conditions of the moving mesh, but
any arbitrary velocity that satisfies these conditions is ac-355

ceptable. Here, the mesh velocity is given by solving a Pois-
son equation on Ω(t):

div
(

�∇ v
)

= 0, (31)

v|
|)Ωimp(t) = Imposed velocity, (32)

)
(

v − v ⋅ n n
)

)n

|

|

|

|

|)Ω⧵)Ωimp(t)
= 0, (33)

v ⋅ n|
|)Ω⧵)Ωimp(t) = 0, (34)

where )Ωimp(t) represents the boundary of the domain with
either a free-surface or imposed velocity, and where )Ω ⧵

)Ωimp(t) is the fixed boundary where we allow the mesh to360

slide along this boundary. Of course one could also impose
the mesh displacement within the domain, or even zero (a
fixed mesh), or impose a sliding condition on a free-surface
(i.e., to fix a non-zero value of v⋅n and fix a Neumann condi-
tion for the tangential part of themesh velocity on the bound-365

ary).

The tensor � is normally taken to be the identity matrix,
but an anisotropic heterogeneous tensor can be chosen to
make the mesh more rigid in a particular direction and in
a given region. Note that having an anisotropic � induces a370

strong coupling between the components of the mesh veloc-
ity v and therefore requires a coupled solver.

At this stage, it is important to note that it is more natural
to solve Eq. (31) with each Degree of Freedom (DoF) stored
at vertices of the mesh. Code_Saturne legacy schemes are375

cell-based with the mesh velocity vc stored at the cell cen-
ters. Therefore, once vc is calculated, nodes displacement
must be deduced by interpolation.

Code_Saturne can make use of algorithms based on the
Compatible Discrete Operators (CDO) framework [7], and380

DoFs can be either at cell centers (cell-based schemes) or
at vertices (vertex-based schemes). A CDO vector vertex-
based solver on the dual barycentric mesh is thus used to
solve Eq. (31) and is compared to the legacy approach de-
tailed hereafter. Note that, thanks to the mapping x0 →385

x
(

x0, t
), solving Eq. (31) on Ω(t) can also be solved on

the original domain Ω(0). This is the choice made when us-
ing CDO schemes for the mesh velocity, to save time on the
computation of additional mesh quantities required by these
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schemes.390

3.4.1. Free-surface boundary condition

The next step is to make use of the ALEmodule for mod-
eling a free-surface. This work is similar to what is per-
formed in other models like Telemac3D [28], in the sense
that the computational domain evolves with the free-surface,395

but contrary to Telemac3D, fluid velocity and pressure are
solved with a cell-based finite volume scheme and not with
a vertex based finite element scheme, and domain is meshed
using cells of any star-shaped polyhedral type.

The aim of the proposed algorithm is to solve mesh ve-400

locity after solving fluid quantities to impose correctly the
kinematic condition at the free-surfacewithout any sub-iterations.
In addition, the mesh-velocity solver is component-coupled
so that sliding conditions are taken into account in an exact
manner.405

To use the ALE module to simulate a free-surface, we
first must specify the free-surface boundary conditions for
both the fluid and mesh velocities. For the first one, in the
absence of wind, a homogeneous Neumann condition is ap-
plied on the fluid as well as a constant pressure p0:410

)u
)n

|

|

|

|

|surface
= 0, p = p0. (35)

It would be possible to take into account wind by providing
a shear stress between the air and water (see [28] for an ex-
ample of this approach). For simulations with turbulence,
it is also necessary to impose conditions for the turbulent
quantities.415

The aim is to impose a kinematic condition for the mesh

velocity:

v ⋅ n|
|surface = u ⋅ n|

|surface . (36)

For now we assume that the mesh velocity is unidirectional,
for example v = wez. This assumption is done following the
remarks in 3.3 concerning the GCL.420

Since mass flux is known explicitly when solving the
mesh velocity, the flux u ⋅ n is used as a boundary condition
for the mesh velocity, as summarized below in Section 3.5.

3.4.2. Legacy approach: node displacements from the

mesh velocity425

In this section, cell-based mesh velocity vc is obtained
with the vector coupled-solver and will be denoted by the
“legacy” version.

We differentiate first the nodes on the external bound-
aries (called the exterior nodes) and others (called interior430

nodes). We specify here that the nodes which are on a slid-
ing surface are considered internal, with a specific treatment
detailed hereafter. Thus, all nodes belonging to )Ωimp(t) are
considered as external, all the others as internal.

Treatment of internal nodes For an interior node v, we435

note v as the list of cells c which include node v. If xc is
designated the center of a cell c ∈ v, the velocity vv of v is
defined by:

vv =

∑

c∈v

1
Ωc

(

vc + ∇ vc ⋅
(

xv − xc
)

)

∑

c∈v

1
Ωc

. (37)

Treatment of exterior nodes For an exterior node v, we
set v as the list of external faces where v appears. If xf is440

designated the center of a face f ∈ v and xc is the center
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x

z
xnv

xn+1v

Figure 3: Illustration of the effect of the filtering (43) on the
standing wave test case described in Section 4.2 with an initial
wavelength of 2Δx planned in one time step. Without filtering,
no fluid or mesh motion is obtained.

of the cell where f appears, we then have a velocity vv of v
defined by:

vv =

∑

f∈v

1
|

|

|

Sf
|

|

|

(

vf + ∇ vxc
⋅
(

xv − xf
))

∑

f∈v

1
|

|

|

Sf
|

|

|

. (38)

Treatment of internal nodes at a sliding boundary For
an internal node v already treated by Eq. (37) which also ap-445

pears on a sliding face f and with an exterior normal vector
n, we project vv on the face f as follows:

vv ←
(

1 − n ⊗ n
)

vv = vv −
(

vv ⋅ n
)

n. (39)

3.4.3. CDO approach: node displacements from the

mesh velocity

In this section, mesh DoFs of the mesh velocity are di-450

rectly associated to the nodes and the main advantage is that
no interpolation is needed to displace nodes:

xn+1v = xnv + Δt vv
|

|

|

n+1

n
. (40)

At the same time, boundary conditions on primal boundary
faces have to be translated in terms of node mesh-velocity
vv on the dual mesh for the free-surface condition. For a455

node v at the free-surface, we set v as the list of external

free-surface faces where v appears, and for each face f of
v, cf is the boundary cell to which f belongs to. The node
mesh-velocity is therefore defined as:

vv
|

|

|

n+1

n
=

∑

f∈v

�uf
|

|

|

n+1

n
⋅ n

�cf
Sf,v ⋅ ez

∑

f∈v

Sf,v ⋅ ez
ez. (41)

Eq. (41) does not ensure local conservation, because the face460

center mesh velocity vf ||
|

n+1

n
, deduced from the nodes mesh

velocity by (23) will not give back
�uf

|

|

|

n+1

n
⋅ n

�cf
. However,

global conservation is ensured:

∑

f∈free-surface
�cf vf

|

|

|

n+1

n
⋅ Sf =

∑

f∈free-surface
�uf

|

|

|

n+1

n
⋅ Sf . (42)

Repartition of mass fluxes from faces to nodes written in
Eq. (41) can be modified without breaking the global con-465

servation (42). Indeed, if we add any affine function of zero
mean over face f , (42) still holds. This property is conve-
nient to filter modes such as waves of length � = 2Δxwhere
Δx is the horizontal space grid, or to smooth too steep waves
before they break (from numerical, rather than physical, rea-470

sons). We modify Eq. (41) by:

vv
|

|

|

n+1

n
=

∑

f∈v

⎛

⎜

⎜

⎜

⎝

�uf
|

|

|

n+1

n
⋅ n

�cf
− �f

zv − zf
Δt

⎞

⎟

⎟

⎟

⎠

Sf,v ⋅ ez

∑

f∈v

Sf,v ⋅ ez
ez,

(43)

where �f is a factor equal to 0 or 1 to activate the filter only
when necessary. �f is set to 1 for face f when there is at least
one of its nodes which is a local maximum (higher than all

Ferrand and Harris: Preprint submitted to Elsevier Page 11 of 26



ALE for waves

the neighboring face centers) and one of its nodes which is
a local minimum (this criterion correspond to the character-
ization of a wavelength 2Δx). �f is also set to 1 for face f
which is too steep (if one edge v0v1 is such thatΔx is smaller
than Δz, where Δx and Δz are defined by:

Δx =
‖

‖

‖

‖

(

1 − ez ⊗ ez
)

⋅
(xv0+xv1

2 − xf
)

‖

‖

‖

‖

,

Δz =
|

|

|

|

(xv0+xv1
2 − xf

)

⋅ ez
|

|

|

|

.
(44)

Term �f
zv−zf
Δt acts as a volume-conservative smoother

for nodes that have an elevation different from the weighted
mean elevation of the surrounding faces. The behavior of
the filtering given by Eq. (43) is illustrated in Fig. 3 where475

the free-surface is initialized with a sawtooth elevation of
2Δx wavelength, but quiescent domain (with zero fluid ve-
locity). In this case, water is supposed to be at rest and el-
evation modes cannot be suppressed by the legacy scheme.
The filtering is removing it in one step, without changing480

the potential energy based on the elevation of free-surface
faces. Similar types of instabilities have been known since
Longuet-Higgins and Cokelet [36]. More sophisticated ap-
proaches to removing this issue have been illustrated by [41].

3.5. Summary of the ALE algorithm485

The algorithm described above to solve theNavier-Stokes
equations on a moving mesh reads:

for time interval n to n + 1 do
for sub-iteration k do

Solve the predicted velocity ũn+1,kc on Ωn;490

Calculate corrected velocity un+1,kc onΩn and the flux
uf
|

|

|

n+1,k

n
⋅ Sn;

if using legacy solver for v then
Solve vc||

|

n+1,k

n
on the primal meshΩn with bound-

ary conditions (36);495

Reconstruct velocity from cell centered values at
nodes vv||

|

n+1,k

n
;

else if using CDO solver for v then
Calculate v boundary conditions at nodes;
Solve vv||

|

n+1,k

n
on the original dual mesh Ω0 with500

boundary conditions (36);
end if

Update mesh from Ωn to Ωn+1,k using vv||
|

n+1,k

n
;

Calculate total mass flux � (u − v)f ||
|

n+1,k

n
⋅ Sn;

end for505

end for

4. Verification and Validation Test Cases

In order to validate these developments formodelingwave
propagation and wave-structure interaction, we consider a
variety of verification and validation test cases, showing the510

fluid motion generated by a piston in order to validate the
ALEmodule without free-surface condition; standing waves
in a closed basin with small and high initial wave ampli-
tudes to verify volume conservation; the viscous damping
of waves, in order to validate the proper rate of decay due515

to viscosity; the propagation of a solitary wave, showing the
exact reproduction of a large amplitude wave; the propaga-
tion of waves over a submerged bar, showing the ability to
handle shoaling; the force on a vertical cylinder in regular
waves, showing issues of wave-structure interaction; and fi-520

nally comparisons against a novel type of wave-maker.

4.1. Test case of a 2-D axisymmetric piston

This case consists in studying a fluid flow inside a cylin-
drical valve (piston) with a sudden expansion. Numerical re-
sults are compared to experimental data from [18]. The sim-525

ulated domain is axisymmetric. The flow is laminar (Re ≃
320), with a density of � = 1000 kg∕m3 and a dynamic vis-
cosity � = 4 × 10−3 kg∕m∕s.
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Figure 4: Sketch of the valve validation case.

Time Piston velocity Piston displacement

0 ≤ t ≤ Ti vp =
Vi
Ti
t dp =

Vi
Ti
t2

2
Ti ≤ t ≤ TTDC − Ti vp = Vi dp = Xi + Vi

(

t − Ti
)

TTDC − Ti ≤ t ≤ TTDC vp =
Vi
Ti

(

TTDC − t
)

dp = 2Xi + Vi
(

TTDC − 2Ti
)

−
Vi
Ti

(

TTDC − t
)2

2

TTDC ≤ t ≤ TTDC + Tc vp = −
Vc
Tc

(

t − TTDC
)

dp = 2Xi + Vi
(

TTDC − 2Ti
)

−
Vc
Tc

(

t − TTDC
)2

2

TTDC + Tc ≤ t ≤ TBDC − Tc vp = −Vc
dp = 2Xi + Vi

(

TTDC − 2Ti
)

−x2 − Vc
(

t − TTDC − Tc
)

TTDC − Tc ≤ t ≤ TBDC vp = −
Vc
Tc

(

TBDC − t
)

dp =
Vc
Tc

(

t − TTDC
)2

2

Table 1
Piston prescribed velocity and displacement.

Fig. 4 describes the geometry and boundary conditions
for the Navier-Stokes equations and the mesh velocity. Two530

different kinds of “mobile wall condition” are implemented
in Code_Saturne:

• imposed velocity of the interface at the center of each
boundary face;

• given displacement of each node of the mobile inter-535

face.

When imposing piston motion, it is decomposed into six
steps in which either the piston velocity vp or the piston dis-
placement dp are prescribed, as summarized in Table 1.

The piston extension is maximum at time TTDC (Top
Dead Center, xp = Xmax = 0.141m) and minimum at time
TBDC (Bottom Dead Center, xp = Xmin = 0.121m) given in
Eq. (45). The maximum velocity during the injection phase

is Vi = 0.006 22m∕s, and the time during the acceleration
phase in which the velocity passes from zero to Vi is given by
Ti = 0.05 s. The minimum velocity during the compression
phase is Vc = 0.0265m∕s, and the time during the accelera-
tion phase in which the velocity passes from zero to −Vc is
given by Tc = 0.18 s where Xi =

Vi × Ti
2

, Xc =
Vc × Tc
2

.
Note that for the maximum expansion time and the complete
compression time the following equations holds:

TTDC =
Xmax −Xmin + 2Xi

Vi
≃3.265 s,

TBDC = TTDC +
Xmax −Xmin + 2Xc

Vc
≃4.200 s.

(45)

Selected axial velocity profiles are respectively displayed540

in Fig. 6 for the compression step, in comparison to exper-
imental data, showing good agreement. First, one can no-
tice that same results are obtained with the CDO and legacy
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Figure 5: Comparison of mass flux computed at the open boundary (green) and the value imposed by the piston, represented in
black dots.

solver for the mesh velocity, and from imposing mesh dis-
placement or directly the mesh velocity. This is expected be-545

cause the code transforms the mesh displacement boundary
condition into a mesh velocity boundary condition to com-
pute it. One can also verify that the incoming and outgoing
mass flux should be equal to the imposed mass flux due to
the valve displacement. As the flow is incompressible, the550

two fluxes displayed in Fig. 5 must be equal.

4.2. Standing wave in a closed basin

This case is initialized by a free-surface with a sinusoidal
form with a wavelength �. We consider a basin with length
L = 400m, and average depth ℎ0 = 10m and we fix � = L

2 .555

The domain is two-dimensional (i.e, one cell thick) and the
mesh used is composed of 10 cells in the z direction and 400
in the x direction.

In order to fix a period of the wave close to 10 s, we take
the acceleration due to gravity to be g = 40m∕s2.560

(Alternatively, we could start from a nonlinear standing
wave solution instead of a pure sinusoidal initial condition,
but our goal here is not to look at the nonlinear wave dynam-
ics, which we will consider in the next cases, but simply to
evaluate the volume conservation and stability.)565

The free-surface deforms over time, and with an initial
amplitude A, one or several (particularly for large ampli-

tude initial conditions) modes become visible. To evaluate
the numerical algorithm used, we begin by studying a wave
which is quasi-linear.570

Linear standing wave When A
ℎ0
≪ 1, linear wave theory

can be used to describe the free-surface, zsurf (x, t), which
is given by:

zsurf (x, t) = A cos
(2�x
�

)

cos
(2�t
T

)

, (46)

where the period of the wave is given by the celerity c, as
T = �

c , with the dispersion relation giving:

c20 = g
�
2�

tanh
(

2�ℎ0
�

)

. (47)

In fact we consider a shallow water case, where ℎ ≪ �, so
we can approximate this as c0 ≃

√

gℎ0. We obtain precisely:

c0 =

√

g �
2�

tanh
(

2�ℎ0
�

)

≃ 19.681m∕s, (48)

giving T0 = �
c0
≃ 10.162 s.

We choose to start with a case with wave amplitude A =
0.025m. The simulation of one hundred periods is shown
in Figure 7 where we can observe the evolution of the wave
height in time at the point x = 0 (the center of the domain).575
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Figure 6: Axial velocity profiles at different positions x for the compression step (xp = 0.127m).
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Figure 7: Time series of wave elevation at the center point in the case of a standing wave. The initial wave amplitude is given
as A = 0.025m for an average water depth of ℎ0 = 10m.

The period obtained numerically is Tnum = 10.163 ±

0.001 s (the range obtained is taken to be the time-step di-
vided by the number of periods observed). This is therefore
a good match for the theoretical T0, which we see in Fig. 7,
T = T0 ± 0.025 s.580

We note that in Fig. 7, that for a relatively long duration,
the wave height remains nearly constant which indicates that
the model is not losing significant amounts of volume or en-
ergy.

Nonlinear standing waves and the conservation of vol-585

ume When the amplitude A of the initial sinusoidal defor-
mation is increased, linear theory is no longer valid, and
other modes of oscillation can appear. The goal here is not

to study the other modes, but to determine the validity of
the numerical developments presented here. As the initial590

amplitude increases from A = 0.025m up to A = 2.5m

(a case that was numerically unstable in earlier versions of
Code_Saturne), we can consider the relative variation in vol-
ume over time.

We recall that from §3.3, this volume numerically does595

not necessarily remain constant using the legacy approach
because of the interpolations between nodes and cell centers
cause differences in how the mesh and fluid velocity are con-
sidered. On the contrary, the CDO approach shows a good
total volume conservation over time. The error remains un-600

der the precision used to solve the mass equation.
In Figure 9, we see that the relative variation in volume
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for all amplitudes with the CDO approach does not exceed
10−9, which is smaller mass solver precision (10−8 is the
tolerance used here for the pressure solver). As expected, for605

larger wave amplitudes with the legacy approach, the loss of
volume becomes larger, but this variation in volume seems
to stabilize after an initial adjustment period. For example,
for an amplitude of 2.5m, the quasi-total loss of volume is
made at the beginning of the simulation, when the wave of610

2.5m breaks into a number of other wavelengths.
The most non-linear case can also be used to see the ef-

fect of the filtering introduced with the CDO solver (see Fig-
ure 8).

4.3. Viscous damping of waves615

To verify that the application of these ALE schemes has
not affected the ability of the algorithm to properly model
viscous effects, we next consider a standing wave, similar
to the previous section, but with viscosity added. Though
this can be extended to arbitrary depths, as in Antuono and620

Colagrossi [1], we consider a wave which normally would be
considered a deep water case, and then can use the solution
from [34] to describe the viscous decay.

The domainwe consider is again two-dimensional, 128 × 64
cells (in the x- and z-directions, respectively, with a width625

of L = 2m and depth ℎ0 = 1m. The bottom boundary-
condition is no-slip, but the side boundaries are free-slip.
For this test case, we take � = 1 kgm3 and g = 1m s−2, to
make all variables non-dimensional. A time-step of√�∕50 s
was used, which corresponds to 1

100
tℎ of the period of oscil-630

lation for an inviscid linear wave. Instead of having an initial
free-surface elevation, here we impose on an undisturbed do-
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Figure 8: Snapshots of free-surface for the filtered (in blue)
and the non-filtered (in orange) for the standing wave test case
with an initial A = 4m and an average depth of ℎ0 = 10m; a
close-up with three times magnification is added to emphasise
the differences, mainly next to the pics.

main the velocity field of a standing Airy wave solution:

u
(

x, t = 0
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

!A sin kx
cosh

(

k(z + ℎ0)
)

sinh
(

kℎ0
)

0

−!A cos kx
sinh

(

k(z + ℎ0)
)

sinh
(

kℎ0
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (49)

Taking kℎ0 = �, and a wave amplitude of A = 0.005ℎ0,
the dispersion relationship, !2 = gk tanh kℎ0, reduces to635
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Figure 9: Relative change in volume in terms of time for the
standing wave test case with different initial wave heights,
ranging from A = 0.0025ℎ0 to A = 0.4ℎ0 with an average
depth of ℎ0 = 10m. Dashed line shows the precision of the
solver for pressure (10−8).

the deep-water case. After, we examine the evolution of the
kinetic energy, K (t) = ∫Ω ||u||

2∕2dΩ, compared to the ex-
pected exponential decay, where K (t) ∝ e−�

√ g
ℎ0
t
K (0) for

a coefficient �.
In deep water, the viscous dissipation of waves due to640

the viscosity of the fluid has been studied since the work of
[34], who predicted � = 4�2∕Re. The exact rate of decay
is slightly different in this case, because for low Reynolds
numbers (where Re = ℎ0

√

gℎ0∕�), this classic solution
does not take into account the bottom boundary layer, and645

even though for inviscid waves, for wave-numbers kℎ0 ≥ �,
we are in the deep-water regime, a more complete solution
was provided by Antuono and Colagrossi [1], who solved
the linearized Navier-Stokes solution that included the ef-
fect of the bottom boundary layer, thus � = 4�2Re−1 −650

2
√

2�11∕4Re−1.5, and showed results thatmore closelymatch
what is obtained here (Fig. 10). In this case, little difference
is seen between legacy and CDO solvers, as the amplitude
of motion is very small.

4.4. Solitary wave655

In addition to handling a moving free-surface, for ocean
engineering applications it is important to be able to generate
waves, particularly steep waves. One form of this which can
easily be studied mathematically is a solitary wave, where
the wave translates over constant depth without changing660

shape.
Here we consider a domain L = 40m long, a depth

ℎ0 = 1m, and a wave with moderately large relative height
A∕ℎ0 = 0.6. Viscosity is reduced to a negligible value,
so any changes to the wave shape in the domain should be665

due entirely to numerical errors. Again we consider a non-
dimensional case, with � = 1 kgm−3, g = 1m s−2, ℎ0 =
1m.

On the wave-maker (left) boundary, the solution of the
Euler equations is computed using the highly accurate solu-670

tion of Dutykh and Clamond [19] to impose the horizontal
and vertical velocity fields as a boundary condition. In order
to start with a wave-tank initially at rest, the wave is shifted
in time so that the wave crest passes x = 0m at t = 8.0 s.

On the other (right) side, an Orlanski-type radiative out-675

let is imposed, where all variables (i.e., velocity and pres-
sure) are assumed to propagate at the theoretical celerity of
the wave; see Orlanski [42] or the Code_Saturne theory doc-
umentation [46] for more detail. Note that this outlet con-
dition is only useful for this case, where the solitary wave-680

speed is known. For more general cases where different
waves propagate at different speeds, other damping methods
are required, as discussed in the next application.

We are able to reproduce a solitary wave elevation within
a few percent at a gauge in themiddle of our domain (Fig. 11).685

The reflection is of similar magnitude, and likely due partly
to an inaccurate wave celerity (i.e., the speed of the numeri-
cally modeled wave is not the same as the theoretical value,
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Figure 10: Evolution of the kinetic energy for Re = 50 (left), Re = 500 (center), and Re = 2500 (right), showing the decay of
energy as compared to the theoretical solution from Lamb [34] and Antuono and Colagrossi [1].
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Figure 11: Wave elevation at x = 20m over time for different
discretizations (dotted: Δx = Δz = 0.2ℎ0; dashed: Δx = Δz =
0.05ℎ0), compared to the theoretical solution (solid line), using
the legacy solver.

taken to be the convective outlet velocity).
In order to understand the errors associated with wave690

propagation, we consider three different grids, with 200 × 5
cells (Δt = 0.01

√

ℎ0
g ), 400 × 10 cells (Δt = 0.005

√

ℎ0
g ),

and 800 × 20 cells (Δt = 0.0025
√

ℎ0
g ). With Δx = Δz =

0.1ℎ0, we get an arrival time (and thus wave-speed) error of
less than 1% for both legacy and CDO solvers.695

We also see a near linear convergence rate for the wave
amplitude (Table 2), which is expected for the low-order
method used here.

4.5. Wave propagation over a submerged bar

A common test of non-hydrostatic wave models is prop-700

agation over a submerged bar, which is beyond the range of
a shallow-water assumption, or even some Boussinesq mod-

els (e.g., the O(�)2 model of [50]). We consider here the
experimental results of [4], comparing against time-series
measured at various wave gauges.705

In this test case, 17500 hexahedral cells are used to dis-
cretize the domain which is physically 30m long, with a
depth of 0.4m, with a bar of minimum depth 0.1m. For
this case, a k − � turbulence model will be used, in part to
demonstrate that it does not negatively impact the propaga-710

tion of the waves in non-breaking conditions.
Waves are absorbed on the right side through a surface

pressure proportional to the vertical velocity at the surface,
similar to [25]. Here, we impose a surface absorbing pres-
sure, pabs(x, t) on the free-surface, which smoothly increases715

from zero inside the domain, up to some maximum, depend-
ing on the vertical velocity, uz, at the free-surface:

pabs(x, t) =

⎧

⎪

⎨

⎪

⎩

CAB(�uz
√

gℎ)
(

x−xAB
ℎ

)2
x > xAB

0 x ≤ xAB

, (50)

where here xAB = 20m and CAB = 0.003 (chosen by trial-
and-error).

On the left side, the velocity is imposed as a boundary720

condition, using second-order Stokes wave theory, similar to
Ma et al. [38], to ensure mass conservation, with a wave pe-
riod of 2.5 s. Two different test conditions are considered;
one for non-breaking waves, and one with plunging waves.
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Scheme Δx
ℎ0
= Δz

ℎ0
Crest Rel. error Arrival time Rel. error Reflection Rel. error

Legacy 1/5 0.536 -10.75% 16.31 1.94% 0.064 10.67%
1/10 0.573 -4.51% 16.09 0.53% 0.062 10.36%
1/20 0.594 -1.05% 16.00 0.01% 0.064 10.58%

CDO 1/5 0.540 -9.93% 16.28 1.75% 0.037 6.25%
1/10 0.570 -5.00% 16.10 0.62% 0.037 6.22%
1/20 0.583 -2.92% 16.06 0.34% 0.045 7.52%

Table 2
Errors in wave-elevation at x = 20m for solitary wave propagation test case at different
grid resolutions.

The incident wave parameters were chosen to best represent725

the signal recorded at the first wave gauge, at the toe of the
submerged bar, in order to best match experimental condi-
tions and imprecision in the physical wavemaker.

For the non-breaking condition, a 2.9 cm incident wave-
height was considered in the basin. Looking at the wave ele-730

vation over time at both this wave-gauge (WG1, at x = 6m),
as well as at the front and back of the shallowest region of the
submerged bar (WG3 andWG5, at x = 12m and x = 14m),
we see that the waves are well-represented (Fig. 12). For
this case, the differences between legacy and CDO solvers735

is negligible.
For the plunging wave condition, 5.4 cm incident wave

is considered for the same setup. Like the previous case,
we are able to verify that the incident wave elevation at the
toe of the bar is well represented by the code, and while the740

peak elevation is overpredicted, the overall form of the time-
series is also captured over the bar (Fig. 13). Initially this is
unexpected, as with the ALE approach we do not consider an
overturning wave, but others [e.g., 53, 9, 38] have observed
that non-hydrostatic models are able to reproduce correctly745

some aspects of breaking waves. Notably, we see here that
the turbulent kinetic energy and dissipation rate show that
the turbulence model is most active exactly in the region
where breaking waves are expected (Fig. 14), though clearly
the exact dynamics of the free-surface are not captured.750

Note that a homogeneous Neumann condition is used at
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Figure 12: Wave elevation time-series at the toe of a sub-
merged bar (at x = 6m) and at the front (at x = 12m) and
back (at x = 14m) of the top of the bar for non-breaking wave
conditions, compared to Beji and Battjes [4].

the free-surface, but as the scale of the vortices (and thus tur-
bulent viscosity) is reduced by the effect of the free-surface,
in general a more sophisticated free-surface boundary con-
dition is needed for the turbulent quantities [see 11, for more755

details].
One critique of general-purpose CFD models for the ap-

plications being considered here may be their computational

Ferrand and Harris: Preprint submitted to Elsevier Page 20 of 26



ALE for waves

20 22 24 26 28 30

t (s)

−0.02

−0.01

0.00

0.01

0.02

z
(t

)
(m

)

Exp.

legacy

CDO

20 22 24 26 28 30

t (s)

−0.02

0.00

0.02

0.04

0.06

z
(t

)
(m

)

Exp.

legacy

CDO

20 22 24 26 28 30

t (s)

0.00

0.02

0.04

z
(t

)
(m

)

Exp.

legacy

CDO

Figure 13: Wave elevation time-series at the toe of a sub-
merged bar (at x = 6m) and at the front (at x = 12m) and
back (at x = 14m) of the top of the bar for plunging wave
conditions, compared to Beji and Battjes [4].
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Figure 14: Turbulent kinetic energy (m2∕s2) over a submerged
bar under plunging wave conditions, corresponding to the ex-
perimental test case of Beji and Battjes [4], at t = 31.2594 s.

speed in comparisonwith specializedwave propagationmod-
els. As the submerged bar test case has frequently been con-760

sidered for validation and demonstrating the dispersive prop-
erties of wave models, this can be used as a basis of compar-
ison. For this we use the 3-D code NHWAVE [38], with
an identical grid and identical starting timestep of 1∕256tℎ

of one wave period. NHWAVE uses an adaptive timestep765

in function of CFL number, but this does not vary signif-
icantly during this test case, so the two models should re-
quire a similar amount of computational effort. To minimize
variations between the tests, results were obtained on a sin-
gle Intel Core i7 processor, with 645.0 s for Code_Saturne770

with the legacy scheme of Code_Saturne (and 2680.0 s with
the unoptimized conjugate gradient linear solvers for CDO
scheme) versus 559.0 s for NHWAVE. This is not meant to
be an exact comparison between the two codes, as NHWAVE
can benefit from higher-order approacheswhich are not present775

in Code_Saturne, and Code_Saturne can be used on types of
grids which are not available with NHWAVE, but merely to
show that Code_Saturne can be used to provide a reasonable
performance.

4.6. Forces on a vertical cylinder in regular waves780

Acommon application ofwave-models is the understand-
ing of forces on bodies. Here we consider the nonlinear
forces exerted on a vertical bottom-mounted cylinder (i.e.,
a monopile) in regular waves. Huseby and Grue [31] con-
ducted a range of experiments which has commonly been785

used for benchmarking numerical tools [23, 44] for the forces
of periodic forces on a cylinder of radius R = 3 cm, in a
depth of 0.6m, at a range of wave conditions. Here we con-
sider the case with kR = 0.245, and a wave steepness of
kA = 0.10. For this application, no turbulence model was790

used, but a viscosity of 1 × 10−5m2∕s was applied, slightly
higher than the molecular viscosity, in order to stabilize the
model and account for some viscous effects.

The grid used consists of 77406 hexahedral cells in a
domain of width 0.5m and length 3.5m, with the cylinder795

positioned in the center of the domain, with a time-step of
T ∕100. Second-order Stokes waves are used to impose the
incoming waves, and the same damping setup as the pre-
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Code_Saturne Exp.

|F1|∕(�gAR2) 6.42 6.45
|F2|∕(�gA2R) 0.41 0.40
|F3|∕(�gA3) 0.29 0.37

Table 3
Harmonic components of the surge force on a monopile in
deep water, with kR = 0.245 and wave amplitude kA = 0.1,
comparing with the experiments of Huseby and Grue [31].

vious case (Eq. 50) is re-used here, with xdamp = 2.5m

and Cdamp = 0.25. The simulations are performed for 10800

wave periods T , with a quasi-steady state being reached for
t > 7T . A short-time Fourier transform is used to evaluate
the convergence of the integrated force on the cylinder in the
x-direction, f (t) (Fig. 15):

F(m)(t) =
2
T ∫

t+T

t
F (t) eim!�d�, (51)

and we see that the computed force compares well to the805

experimentally determined values (Table 3), using data from
four periods, after a spin-up time of 7 periods has passed.

Further study of different amplitudes showed that local
instabilities near the monopile are found at higher incident
wave-heights, likely due to local wave breaking or an impor-810

tance of local viscous effects that require a finer mesh than
considered here. Here the legacy solver was used for the pre-
sented calculations, though little change was seen with the
CDO solver.

4.7. Bottom-tilting wave-maker815

In the ocean, tsunamis exhibit extremely longwavelengths
that can be difficult to realistically replicate in a physical
wave tank or basin, which are normally designed to handle
conditions representative of wind-waves. While there has
been extensive studies with solitary waves, it is known that820

solitary waves do not correctly represent the waves which
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t/T

|f
′(
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)
|

Figure 15: A vertical cylinder in regular waves (upper panel,
at t = 10T ), and the corresponding variation in time of the
first three harmonics of the horizontal force, as evaluated by a
short-time Fourier transform.

are actually experienced in a tsunami, as shown by Madsen
et al. [40]. As a result, Lu et al. [37] has developed a bottom-
tilting wave maker, testing on a small wave tank, 2m long
(see Fig. 16a; i.e., L = 1m). This provides a validation case825

where one of the boundaries is thus moving.
This 1m long flap is either starting from a lowered po-

sition, moving up, or starting from a raised position, mov-
ing down, and stopping when the bed is flat. One can then
propagate the waves over a long time, reflecting between two830

walls, even from a very small tank. Numerically, this is de-
scribed such that the depth, ℎ(x, t), is:
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Figure 16: Bottom-tilting wave-maker schematic (top panel), and the wave profiles that are generated by an initial movement,
compared to the experiments of [37].

ℎ(x, t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ℎ0 x > L

or t > bL
√

gℎ0
,

ℎ0 +
L−x
L (aℎ0)[1 −

t
√

gℎ0
Lb ] x < L

and t < bL
√

gℎ0
,

(52)

where the prescribed motion has a non-dimensional ampli-
tude a and time b. For validation, we consider the results for
a resting water depth of ℎ0=5 cm, with a duration b = 1.4,835

and amplitude a = ±0.8.
The grid is discretized with 5 vertical levels and 100 cells

in the lengthwise direction and 11 cells in the spanwise di-
rection (i.e., Δx = 2 cm, Δy = 1 cm, and Δz ≈ 1 cm), and a
time-step of 0.009 s is used. It is assumed that all boundaries840

are smooth walls. The flap motion itself is imposed by fixing
the mesh velocity.

The wave elevation wasmeasured at a gauge at the center
of the tank (i.e., directly over the hinge), and we are able to

reproduce the experimental values to a reasonable degree of845

accuracy, for both upward (Fig. 16b) and downward (Fig. 16c)
motion.

5. Summary

Here we present recent developments of the ALE mod-
ule ofCode_Saturne for the simulation of free-surface flows,850

and then the results of applying the resulting model to ocean
waves. Although certainly there are limitations to using a
finite volume ALE model such as Code_Saturne in term of
wave steepness, we can see that for certain circumstances,
understanding the limitations of numerical dissipation and855

lower-order elements, a general CFD solver not specialized
for water wave propagation can produce useful results in rea-
sonable amount of time. Validation tests were presented
for multiple setups, showing that the model is able to ex-
actly conserve mass with the vertex-based solver on the dual860

barycentricmesh, correctly conserve energy, propagatewaves,
and compute forces on structures.

In future work, comparisons will be made between the
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ALE module and the recently released VOF module, which
will enable the complex modeling of breaking waves, but865

at an increased computational cost. In order to offset this in-
crease in computational time, a coupling betweenCode_Saturne

and far-field inviscid models will be considered.
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