

White Certificate on electrical motor driven systems

Marc BERTHOU & Abdessalim ARRAS - EDF R&D François SALIOU - Leroy Somer, Groupe Nidec

17th september 2020

CONTENTS

WHAT ARE THE FRENCH WC?

- In France, 90 % of the 1.5 % of the annual savings target set by the EU Directive (2012/27/UE) is achieved through the WC.
- A steadily increasing obligation since 2006
 - Obligation₂₀₁₈₋₂₀₂₁ = 2.5 x Obligation₂₀₁₅₋₂₀₁₇ = 30 x Obligation₂₀₀₆₋₂₀₀₉
 - Since 2016, a specific amount of WC has to be made in fuel poverty households

Motor driven systems is a WC standardized operation since august 2019.

N.B.: WC are accounted in kWh « cumac » which represent final energy savings cumulated over solution lifespan and actualized at 4 %

OVERVIEW OF ELECTRICAL MOTOR CONSUMPTION

Key figures for motors in industry

Electrical Motors represent a huge energy saving potential.

OVERVIEW OF ELECTRICAL MOTOR CONSUMPTION

67 TWh = consomption of the electrical motors over 11 kW (80 % of electricity consumption and 5 % in number)

Motor driven systems are used in all sectors and in many applications.

« COMPONENT APPROACH » VS « SYSTEM APPROACH »

The limit of a "Component approach":

- Sum of components
- Does not guarantee the overall efficiency
- Overlook the system parameters
- Does not take into consideration all the interactions between the different components
- Can lead inefficiency of the driven machine
- Does not encourage interactions between the engineers involved in the project

The components are optimized one by one = risky approach.

« COMPONENT APPROACH » VS « SYSTEM APPROACH »

The interest of a "System approach":

- STEP 1. Question the demand
 What are the final goal of the application?
- STEP 2. Current functioning analysis
 What are the parameters that give information about the demand evolution?
- STEP 3. Optimize the control:

 Is it possible to control the drive with these parameters?
- STEP 4. Application equipment selection:
 Optimize the performance by calculating the energy consumption at the different set points of the process.
- STEP5. Drive+motor+Transmission selection
 Appropriately sized motors operate the driven equipment as efficiently as possible.

Acting on the demand generates more savings than only optimizing a component.

EXAMPLE 2: COMPRESSED AIR SYSTEM IN A CHOCOLAT FACTORY PLANT

1 Initial situation

Flow + Power measurement

2 Question the demand

- Leak detection and reparation campaign
- Supression of Inapropriate use of compressed air
- Pressure drope

3 Drive

Automated drive + Algorithm

Vsd compressor

5-Results

- Compressor production ratio : reduction by 16%
- Compressed air production volume: reduction by 25%/year
- CO2 emission : 12 tons/year

CASE 2: EXHAUST FAN GAS OF A CAR BUMPER PAINT BOOTH

End user demand: operating cycle: 15m³/s for 10% of the time and 12m³/s for 90% of the time with constant pressure 2800 Pa – 7000 hours per year and energy saving.

1-Goal for the End User

- Optimising the process
- Reduce its consumption and total cost ownership

2-Analysis of the need

- End user demand Operating cycle
- Measurement of energy consumption during the cycle

3-Selection and recommenda tions

- Choice of the most efficient equipments
- Integration of a control loop
- Simulation of cost saving with Digital tool ESA

4-Installation

- Installation and commissioning
- Measurement of energy consumption according to the cycle

5-Results

- Average power consumption: 40kW
- Energy saving / year: 171 MWh
- Cost saving / year: 14 K€ and CO₂: 6800 kg

 $\eta = 96,2\%$

CONCLUSION

The aim: finding ways to improve energy efficiency and achieving the carbon neutrality by 2050 ... WC help this challenge.

- ✓ Motors account for 70% of electricity consumption in industry on average
- ✓ The systems approach is the best solution for optimizing the energy consumption of a drive system in the vast majority of processes (fan, pump, air compressor, cold compressor, etc.).
- ✓ The main objective is to meet the needs of the application and the process! no more, no less!
- ✓ Today we have at our disposal to meet this need
 - ✓ Many high-performance solutions (ex: IE5, synchronous, Inverter)
 - ✓ Calculation Software to help us
 - ✓ Innovative and communicating sensors, control loop, and measurements...

We have the power for eco-efficient solutions let's act!

