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Extensions of the I&AB method for the reliabilitgsessment of tt
spent fuel pool of EPR

M. Bouissou
EDF Lab Saclay, 7 Bd Gaspard Monge, Palaiseau 91120

ABSTRACT: The I&AB (Initiator and All Barriers) method wassdt introduced at ESREL 20, asan effcient
means to calculate, thanks to closed form formulae reliability of a very large repairable systeith de-
pendencies among components. The mathematical gupipl&AB is continuous time Markov chains, and
therefore it cannot be used for modeling the sfexitpool of a nuclear power plant, because fa #lyistem,
there are two kinds afeterministic delaythat must be taken into account: grace timesgfample, after the
total loss of cooling of the pool, it takes exaddyhours for the water to start boiling), and deiristic failures
due to the limited capacity of water tanks. In gresent paper, we extend the 1&AB method to acctamt
deterministic delays. We explain how we could appig method in the case of the fuel pool of thdREP
(European Pressurized Reactor) starting from a modee form of a BDMP (Boolean logic Driven Manko
Process), and how results and computation timepaaio a Monte Carlo simulation of the same BDMP.

1 INTRODUCTION For these reasons, we have developed a new approxi-
mate method for the quantification of very large
The standard PSA method (based on fault tree linkBDMPs, and more generally any model able to gen-
ing) is not well suited for the reliability assesamhof erate minimal products containing one initiating
the spent fuel pool of a nuclear power plant, fBar-s event and the failures of the barriers activatéer aff
eral reasons. Firstly, the dynamics of the phen@menn order to avoid the undesirable event. This iy wh
to be modeled are relatively slow because of ttgeela the main foreseen application domain is nuclear,PSA
amount of water available in the pool itself andna all the more so as existing PSA models will be very
safety systems. Itis thus not sufficient to lovlwhat easy to adapt to I&AB, merely by adding repair sate
can happen in only 24 hours after an initiator.-Secto component data. In a PSA context, I&AB can be
ondly, the fact that components are repairabletla@ed used to take repairs into account instead of paistul
existence of multiple standby redundancies caneot king that 24 hours after an initiating event, eitttex
ignored. undesirable event is unavoidable, or the systeim is
EDF has developed several tools for creating and safe state. The I&AB (Initiator and all barriemsin
guantifying dynamic models, better suited for thisprinciples were published in a paper at ESREL 2016
kind of system study. In particular, BDMPs (Boolean(Bouissou & Hernu 2016). In the present paper, we
logic Driven Markov Processes) are a powerful modgive all analytical formulae of I&AB and of its estt-
eling tool for the dependability analysis of dynami sion in the case of grace times and determiniatie f
systems (Bouissou & Bon 2003). For more than temres. We also give some numerical application exam-
years, they have been used for assessing theilrelialples, comparing the 1&AB approximation to “exact”
ity, availability, and safety of complex reconfiginle  calculations performed on a dynamic model via
systems. BDMPs have a graphical representatiomMonte Carlo simulation.
close to fault trees, yet they specify (potentiatlyy
large) CTMCs (continuous time Markov chains). A
BDMP model with the same detail level as faultdéree 2 THE INITIAL I&AB METHOD (2016)
of a standard PSA would not be quantifiable by ana;
lytical methods, even with classical approximations™
On the other hand, it would require too large compuSuppose we want to calculate the reliability oka r
tation times with Monte Carlo simulation, becads2 t pairable system with standby redundancies; it mreay b
probability of reaching a too low level in the spen a good approximation to take into account only one
fuel pool is very small. level of dependences between the components. In

1 Hypothesis on the system and definitions



other words, one is capable to distinguish failloes 2.2 1&AB general formulae
“normal” components (they are called "initiating

events") and failures of components in standbyt (th an lead out the system from its perfect statenThe

function only in case of failures of normal compo- . R ;
nents). But one cannot discriminate between a con%gcf%flr']régfrtg ngl)’ the system unreliability at titrean

ponent of “primary standby” (that assures the func-_

tioning ofd “the systlem after a) fa(ijllure of theR(t) <1— exp(—tXi—iAiePic) 2

corresponding normal component) and a component , . . .
P ” wherelie is the failure rate of initiating everd and

giIusrgcoofrlﬂgrgri?rgzrr‘;/jt;i/an((tjrl])?/tC%Fr)r?;g?)tne:ngnly after %ie includes probabilities for ak minimal products

. . corresponding to it.
The 1&AB method relies on the two following ap- : T : ,
proximations: In calculations we distinguish two time intervals.

. . The first interval is the mission time figuring (8).
AQ: When an initiating event occurs, all standby he second time intervalisfinite and starts once an

components are supposed to start functioning (of.... *. e
maybe refuse to start) immediately after the itiitin ?cl)trlr?“(r)lge(rel\tlsri]rtl ?l:r?isn iPTllgfe.rggfcll?ai_’i(ft\)l\?iml#lytitrﬂt
event; then, they may fail and be repaired inde- P b

: il . interval [0, o[ is simply the unreliability of a parallel
Peepn;ilreenély from each other until the initiating etvesn system made of these componeRigco): then we

: Lo - - an use the following upper bound fiy, that will be
Al: Once an initiating event is repaired, the systen‘f N . g
cannot anymore fail, whatever happens. a good approximation when all failure probabilities

are small:

Let us suppose that there aranitiating events that

We suppose that the real system is described by, < Y¥_, R.() (3)
CTMC where the initial, "perfect" state is the stat

into which the system always returns, until it ks a Using the Murchland approximation, we obtain:

sorbed by a failure state. Then its unreliabilipde  p;, < ¥k, E(N,(c0)) 4)
estimated from the following formula (Bouissou & . _ .
Bon 1992): whereN, (o0)is the number of failures of the mini-
_ mal productc on an infinite horizon. What keeps
R(t) <1— exp(=Apt) (1) smallis the fact that in the initial state consatefor

of rates of all transitions exiting the initial &pand OUt once repaired, it never fails again, contrary t
pis the probability that the initiating events ldacan ~ Other elements of the product. (this is the appnaxi

accident before the system goes back to the perfe@?” Al). o
state. In order to calculat&(N,(t)) we need to give first

mal content of (failure) sequences" (MCS) of thebility characteristics: N
Markov chain, as it was defined in (Bouissou 2006) UnavailabilityQ(t) — the probability that a compo-

The formal definition of a MCS is given ibid, but i ~ N€ntis in a failure state at tintie _
can be defined informally as the result of a Boolea~ Unconditional failure intensity\(t): W(t)At is the
reduction of the following fault tree: a single @R&te mean number of failures of a component between

with one son per failure sequence, each son being p _ t andt +At. _ . .
sented as an AND gate over the events appearing ffPr markovian basic events, depending on their,type
the sequence. Initiating events must be distinguish these quantities are given by the following expres-
from other events, so that for example, the MC8 of SlONns. . o
system made of 2 components Y and Z in active re= Initiating event (the repair is definitive)
?yng}ancy is {Y_init, Z} {Z_init, Y} and not simply Q(t) = exp(—ut)

’For real, complex systems, the MCS can be ob- W) =0
tained in (at least) two ways: by building a PSPy — Failure in operation (it can fail several times)
model made of event trees and fault trees, andicalc N
lating its minimal cut sets, or by building a BDMP £) = 1 — — O+ )t
and applying the steps described in (Bouissou & o® A+ [1=exp(=(+wo)]
Hernu 2016) to transform it into a standard faet _ _
whose minimal cut sets are the MCS of the Markov W) = 7\(1 Q(t))
chain specified by the BDMP. In the remainder ef th _
paper, we will therefore suppose that we have the
MCS of the studied system at hand, and we will call Q(t) = yexp(—ut)
its elements "minimal products"”. W) =0

Failure on demand (the repair is definitive)



Because of the lack of space, we will not recatehe [[7L;(1—e %) =
the demonstration given in (Bouissou & Hernu 2016)_

that leads to the following formula, written fomdn- = 1 —ZiZ e + Xk e YR, e7* —
imal productc containing failures on demand and e YR e T Y e TR et
failures in function. (—D)™exp(— XM, r;x). 9)
E(N.(£)) =TTz Ve X fot exp(—peiex)f(x)dx  (5) Hence, after the integration from 0 to infinity, we

ith obtain an alternating series, every term of whioh,
wit its turn, is a sum of fractions. For instance,gbeond
f) = exp(=x %'y 1e ) By Wei 0O T2 Qc (%) integral results in:

. - - oooe_uxn}zﬂl_e_rjx) dx == — i=1 ~
Equation (5) assumes that a minimal product con- 1 W Wt

tains at least one basic event with a failure iBrap ~ Xiz1 Xj>;
tion. However, sometimes minimal products are only
composed of basic events corresponding to failures. + (—1)™(u+ Y72, ;)L (10)
on demand (plus one initiating event, as usudly).
such a case, we suppose that these events haptpenda}li
= 0 and the unreliability for minimal productis
given by:

u+Ti+Tj

The first integral is calculated in a similar wéye
ly difference is that one should exclude curednt
ement from the product.

These analytical formulae (8) and (10) seem very
R.(®) = Pr(top = trueatt =0) = [['=; ;- (6) cumbersome; however, they permit to considerably
reduce the processing time (in comparison with-a nu
merical integration) while ensuring an excellerdwac
The general equation (5) yields a closed form fdamu racy.
in the purely markovian case, where all components
have constant failure and repair rates.

In order to simplify notations, we will omit the-in 3 1&AB EXTENSIONS
_dexc_ in the remainder of this se_ct_ion: we will implic- 3 ¢ Taking grace times into account
itly give formulas for a single minimal product. _ _ _

Taking an infinite time horizon and replacing In this section, the focus is on systems such &fit;

W; (x) by its expression given in section 2.2 for a failu  the loss of all components subject to random fesiur
in operationequation (5) becomes: in a minimal product, the undesirable event is ykda

: o by some physical process that guarantees a determin
E(N()) = Tliz1vi X [, exp(—wex)f()dx  (7)  istic grace time. The spent fuel pool is a goodrexa

2.3 |1&AB formulae in the markovian case

with ple: after the complete loss of the cooling systta,
water will heat until it boils, but this procesdister-
fO) =exp(—x X5y ;) T2, A (1 - ministic and it would give an excessively conserva-
Qi(x)) ML Q) = tive evaluation to replace the grace time by a oamd
i delay, exponentially distributed in order to stayhe
' m m m markovian framework.
exp(—x Xj=g ) Xiz1 A | ITj=1 Q5 () — ITj21 @ () | We first suppose that we need to quantify minimal
J# products containing failures of components (wité th
Here we need to introduce new notations in order tsame hypotheses as in § 2.3) and a single detesmmini
simplify upcoming formulas. Let: tic grace time. LeXc be the failure time of the sat

of markovian elements of the minimal prodecty;

— l
H= Mt Xy the time needed to repair at least one of the nviako

nn=AtY components, starting from the state where thegplre
Hence, replacing the functio by their definitions ~ failed, andTcthe grace time. For sake of simplicity,
and using these new notations, we obtain: we suppose that after a given occurrence of thie ini
ator, the basic event corresponding to the grace ti
E(N()) =TIy v, TP X behaves like a Heaviside function: it becomes atue
Xc +T¢ and stays true forever (it is “not repairable”).
(mﬂzlﬁ INCE 71 — e %) dx — The probabilitypie to go from the state where the sys-
e 0 i tem is just after the initiatoe to the failure state can

be estimated as:

m Moo uxm q _ Ty
Mg Jy e - W)- ®) e = S E(N.(0)) - Pr(¥, > T)). (11)

Each integrand includes a product of functionscwhi
can be represented in the following way:



The total repair rate when all markovian componentg (N(e)) = []L, v, X
are failed is the sum of their repair rates. Hence

Pr(Y, > T.) = exp(—T, DA, ;). (12) fooo exp(—px) X%, Wi(x) | T1721 Q;(x) X

As for E(N.()), it can be computed using the for- I
mulae of §2.3.
To conclude this section, let us mention that the H(to) |dx + [ exp(—px)8(x —
grace delay may depend on the minimal product, and 0
that a minimal product can contain two or more grac m
delays: in this case, only thest onemust be taken to) [1j=1 Q; (%) dx
into account (cf. §4.1.2 for more details abous thi Finally,

choice).
E(N(®)) = Ti=1Y, X
“exp(—px) T Wi (x) [T, Q; (%) dx

If, after a non-recovered loss of cooling, the watefto PL=hx) Rz Wil )H]j;% Q) dx +
starts to boil in the fuel pool, there is a pod#ipto  exp(—nuto) [T2, Q;(to) (14)
add water coming from tanks. However, the capamtyr ] ]
of tanks is limited and after a given time the wate The second term (the integral) of equation (13)man
flow is interrupted: this is what we call a detemisfic ~ Written, using the same notations as in §2.3:
failure. After a given initiator, such failures che
considered as non-repairable: it is impossibleeto r Y%, A; (1‘[1 17 f P 1‘[] (1 —e %) dx —
plenish the tanks in a short amount of time (theesa jei J#i
applies to batteries). However, in a dynamic mode _ s
they can be associated to a repair (with a smgélire =1y f T (L = e7Y) dx)' (15)
rate, see discussion on that topic in 84.1.2) deoto
allow the model to return to its initial state.drder ~ After integration fromo to infinity, we obtain for the
to be consistent with general assumptions of 1&AB second integral the following alternate sum:
we will suppose that the "timers” associated tedet o _, —m 1 — o=Ti%) dy = SRCHEY)
ministic failures start just after the initiatingemt; Jo e (L =) dx = "
this is obviously conservative, as in fact theytsa& (—(utr)te) exp(—(utri477)to)
ter some failures. This assumption has an immediafg}., SX-WTt) | gun sm SR WTIT0)
consequence: if there are two or more deterministic e (Quarar 4roto) HATHT]
failures in a minimal product, the one associated ty2, Y7, Y7L ; A had 2
the greatest delay suffices to prevent the minimal WHTLAT) Tk
product from becoming true until it happens. So,..+ (=1)"™(u+ X2, 1) texp(—=(n + X724 1) to).
without loss of generality, we will consider in ghi
section that we want to quantify a minimal product
containingl failures on demandn failures in func-  Of course, takingo= 0, we obtain again the formula
tion, and one deterministic failure. (10) given in 82.3. . o

We define the unavailabilitg) and unconditional Al these formulae are so complicated that it is-ne
failure intensityW, needed in equation (5), for this €SS&rY to carefully validate their implementatiorai

type of basic evenf) is a Heaviside function an/ program. The next section has two purposes: give

3.2 Taking deterministic failures into account

a Dirac distribution: what we believe is the result of I&AB (we cannot
guarantee that our Python implementation is totally

0(t) = R(t) = H(ty) = {0 t<to bug free) and see how I&AB approximations com-
Lt =t pare to more precise calculations made by Monte
W(t) = 8(t — tg). Carlo simulation (the only possible method because

of deterministic times) on a truly dynamic model.
With these notations, equation (5) can be written

as follows (with an infinite time horizon, and otimg

the minimal product indeg): 4 ACCURACY TESTS OF I&AB EXTENSIONS

E(N(e)) = [Tk, v, X f°° exp(—piex — Yi—g Wix) X The small examples of this section were designsd ju

LW, (o) [T Q; () dx (13) to make comparisons between I&AB and "exact” cal-
i ! culations performed with Monte Carlo simulation. In

. . practice the models were input graphically as BDMPs
Taking, as in § 2.3, in KB3 (see Figure 1 for an example), then proagsse
= +Z§:1u- and both by I&AB and by the Monte Carlo simulator
le J YAMS. An overview of EDF tools including KB3
=Nty and YAMS is given in (Bouissou 2005).



In all calculations, failures are associated tailufe the failure of A and the end of grace_time_1. The t
rate of 16%h and repair rate of 2 #h. The grace grace times (in hours) are successively taken aqual
times and delays of deterministic failures are -indi (5, 20) (line 4.1.2a of Table 1), (20, 5) (line {5,
cated in 8 4.1 and 4.2. Table 1 gives a synthésif o 35) (line c), (35, 15) (line d), (30, 70) (line €j0, 30)
comparisons. The numbers in the first column correfline f). Note that in the dynamic model, the basic
spond to the numbers of sections below that explalavent grace_time_1 is considered as repairablé (wit
the test cases. All calculations with I1&AB requae repair rate equal to 1/250h), so that after araitiity
negligible time, whereas some of the Monte Carleevent, the system can return to its initial state- p
simulations require a few minutes for sufficieneépr vided it does not reach the undesirable event; the
cision. value chosen for the repair rate is not sensitsvieag

as the mean time to repair components is much
Table 1. 1&AB accuracy on various simple test saé®lumns  smaller than the mean time to repair the grace:time
2 and 3 are the estimations of the unreliabilityt @000 hours 4 such a case, after a given occurrence of thiadini

computed by I&AB and Monte Carlo simulation (thstlaol- ; ; " :
umn is the width half of the 90% confidence intéraé the tor, the grace time can be considered as "notrepai

YAMS result). ble" just like in I&AB. In the simulation model, ¢h
order of the two grace times makes a differentieely

Test case I&AB YAMS  conf.interva  are not equal. In I&AB, it is also the case because

411a 5.25 19 50516 52116 only the last grace delay is taken into account. We

411b 1.17 1® 1121¢ 55010 have also tested the idea of taking the sum ofitbe

4llc 5.85 19 57216 39310 grace delays like a single one in I&AB: it yields r

412 a 708 19 26016 264 16 sults much closer to those of the dynamic modél, bu

412b 173 10 30016 32410 this approximation can produce optimistic resuits i

412c 2.89 19 6.95 160  4.33 16 some cases (for case f the result is 5.85).1Mtui-

41.2d 9.55 19 1.03 168 5.27 169 tively, this is due to the fact that in the dynamiodel

412e 3.54 10 38016  1.011€ only the last grace delay is competing véthrepairs

4.1.21 3.8918 100168 16410 of the markovian elements of the cut set. Cf. 80

421a 1.87 10 16710 86710 4.2 Deterministic failures

42.1b 6.21 1® 5.44 16¢  1.71 16

4.2.1c 1.65 18 16716 95010 4.2.1 Barriers in active redundancy

422a 1.87 19 1.42 168 2.75 16 Let us consider a little hydraulic system modelgd b

422b 1.87 10 1.56 168  2.88 16 the BDMP below:

422c 6.21 1® 9.86 160  7.30 16

422d 6.21 1® 1.14 16  7.86 16

422e 1.65 19 8.28 160  4.73 16

422f 1.65 19 8.62 1¢ 4.83 160

Below are the descriptions of the test cases and co
ments on the results.

4.1 Grace times

4.1.1 Single grace time N /AND

The minimal product to quantify is {Initiator, A,,B < O o

grace_time}. In the dynamic model, there are only Lok et AND_2 -

two sequences: Initiator, A, B, grace_time anddnit I OR)\ OR

tor, B, A, grace_time (A and B are in active redun- .{’ i, 1
dancy). The grace time is successively taken dqual Bamer]_lost P Bamer2_lost
25h (line 4.1.1.a of Table 1), 50h (line b), 100hg I!’ ‘I‘, 1 i
C) N N2 _\.Il '_\I/

In this case, 1&AB works quite well, and it is not 7S S Lk _\@
surprising, given the fact that the dynamic model ¢ — e o
responds exactly to the simplifying assumptions = e -
made in § 2.1. Figure 1. BDMP modeling a system with bounded cijesc
4.1.2 Two grace times When the initiator Leak occurs, the two barrieexte

The minimal product to quantify is {Initiator, A, one composed of a pump and a tank) are activated.
grace_time 1, B, grace_time_2}. In the dynamicThe undesirable event occurs if, before the repfair
model, there is only one sequence: Initiator, Athe leak, the two pumping systems are lost, eltleer
grace_time 1, B, grace _time_2. The grace time isause of a random failure of the pump, or beceahese t
fractioned, and the component B can fail only aftetank is empty. The failure and repair rates fod@n



events are as described at the beginning of 84pexc event happen sooner (case of a failure), or ldaue- i
that the repair rate of the Leak is 0.1/h in otdeget changed (case of a repair).
small enough probabilities. The 1&AB theory makes a very clear distinction
The results given in Table 1 correspond to the folbetween the two concepts, because it considers that
lowing values for the times after which Tankl andthe grace time starts when all other componenttseof
Tank2 are empty: (40, 30) (line 4.2.1a), (80, 6@e( cut set have failed, whereas the timer of a detasmi
b), (150, 100) (line c). Note that the order of ttve tic failure starts just after the initiator. An @énmedi-
numbers is not important here, because of the synate grace time such as in the example of § 4.2 co
metry of the two barriers. 1&AB performs quite well responds to none of these cases, this is why iInB&A
on this example, where the minimal product containit should be simply ignored. It is the user's respo
ing the two deterministic failures is dominanttie  bility to mark leaves as grace delays, determmisti
dynamic model as well as in I&AB, the amount offailures or "to be ignored" in the BDMP before tsan
water in the biggest tank is the most influent pgga forming it into input data for I&AB.
ter. On a large model, it is probable that the few mini-
mal products with a too conservative quantification
4.2.2 Barrier 2 activated on failure of barrier 1 will be "hidden in the crowd" and that the globed r
sult will not be much affected.
In this case, in the dynamic model, the functioning
times of the two tanks ado! up, unless a falll_Jre 0{5 APPLICATION TO THE SPENT EUEL POOL
pumpl forces to start barrier2 before depletion o
tankl. It is therefore not surprising that I&AB®re  To perform all our tests so far, we have usedie i
conservative in this case than when the two barriemplementation of I&AB that we described in (Bouissou
are in active redundancy. The BDMP corresponding. Hernu 2016). It is not the most efficient becaitse
to this case is not shown, because it is the BDMP cseparates the search for minimal products fronr thei
Figure 1 with justbne additional trigger (red dotted quantification, therefore preventing the use of@bp
line), going from gate Barrierl lost to gate Bar-ability threshold to discard at an early stagéadal-
rier2_lost. There is no need to re-run the calautst culations most minimal products, as it is donehsy t
with 1&AB, since for this method, this case giveet MOCUS algorithm (Fussell & Vesely 1972). In spite
same results as the previous one (active redundanoy this limitation, we have been able to demonsetrat
of barriers). But here, the capacities of the taucks  impressive performances of I&AB in the spent fuel
are not exchangeable in the dynamic model, this ipool application.
why we ran YAMS with the following couples of val- ~ We have built a model relative to the spent fuel
ues for deterministic delays: (40, 30) (line 4.2,.2a pool of the European Pressurized Reactor andjits su
(30, 40) (line b), (80, 60) (line c), (60, 80) @ird), port systems. Although less detailed than a claksic
(150, 100) (line e), (100, 150) (line f). The umabll-  PSA model, the BDMP we have built takes into ac-
ity increases a bit when the greatest delay idasie count all dependances due to standby redundancies,
one. Going from line a to f, the results of IKABuwge common cause failures, sharing of electrical sup-
from extremely conservative (by a factor 10) to acplies... The model takes into account both the grace
ceptably conservative (by a factor 2). On the othetime of 14 hours before boiling of the water and de
hand, using the sum of the delays instead of thatgr terministic failures of tanks used to replace evapo
est cannot be recommended because it could lead rated water.
optimistic results. This BDMP (326 leaves, 77191 minimal products
of order up to 6) could be processed by I&AB in a
few minutes on a laptop. This model happened to be
5 DIFFERENCES BETWEEN GRACE TIMES also quantifiable by YAMS: the Monte Carlo simula-
AND DETERMINISTIC DELAYS tion gave a failure probability smaller than theuie
In a dynamic model like a BDMP, both grace timesof I&AB by a factor around 2, but the calculati@ok
and deterministic delays are represented as lemsves 25 minutes to reach a 10% precision with 95% of con
sociated to a deterministic time to failure. Sodife  fidence on the same machine.
ference between those two concepts is not obvinus.  Besides, with Monte Carlo simulation, it is very
essence, the difference between a grace delay andhard to get qualitative results: for that particula
deterministic failure is that: model, there is only one dominant sequence and all
- Once the grace delay has started, whatever happesther sequences are much less probable: it would re
on the system can only postpone (case of a repair) quire many hours of simulation to get results compa
undesirable event, or leave it unchanged (case ofrable to the, say, 10 most probable minimal prosluct
failure); that are easily identified by the I&AB method.
- Inthe case of a deterministic failure, whatevap-
pens on the system can only make the undesirable
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