
HAL Id: hal-02274615
https://edf.hal.science/hal-02274615

Submitted on 30 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new safety and security risk analysis framework for
industrial control systems

Siwar Kriaa, Marc Bouissou, Youssef Laarouchi

To cite this version:
Siwar Kriaa, Marc Bouissou, Youssef Laarouchi. A new safety and security risk analysis framework for
industrial control systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of
Risk and Reliability, In press, 233 (issue 2), p. 151-174. �10.1177/1748006x18765885�. �hal-02274615�

https://edf.hal.science/hal-02274615
https://hal.archives-ouvertes.fr

1

A new safety and security risk analysis
framework for industrial control systems

Siwar Kriaa1,2,*, Marc Bouissou1, Youssef Laarouchi1
1 Electricité de France (EDF), 7 boulevard G. Monge, 91120 Palaiseau, France
2 CentraleSupelec, Grande Voie des Vignes, 92290 Châtenay-Malabry, France

siwar.kriaa@gmail.com, {marc.bouissou, youssef.laarouchi}@edf.fr
*corresponding author

Abstract
The migration of modern Industrial Control Systems (ICS) towards information and
communication technologies exposes them to cyber-attacks that can alter the way they
function, thereby causing adverse consequences on the system and its environment. It has
consequently become crucial to consider security risks in traditional safety risk analyses for
industrial systems controlled by modern ICS.
We propose in this paper a new framework for safety and security joint risk analysis for
industrial control systems. S-cube (for SCADA Safety and Security joint modeling) is a new
model-based approach that enables, thanks to a knowledge base, formal modeling of the
physical and functional architecture of cyber physical systems and automatic generation of a
qualitative and quantitative analysis encompassing safety risks (accidental) and security risks
(malicious). We first give the principle and rationale of S-cube then we illustrate its inputs
and outputs on a case study.

Keywords
Industrial Control System, Safety, Security, Modeling, Risk Assessment, Cyber-physical
system.

1. Introduction

Industrial systems like power plants, factories, airplanes or cars address the daily and vital
needs of society. Their safety is usually given careful consideration as their failure or
malfunction can engender adverse consequences on humans and the environment.
ICS offer the necessary means to control and supervise these critical systems and
infrastructures. Traditional ICS were based solely on mechanical and electro-technical devices
and proprietary standards which were well known. These systems have however become
expensive to deploy, maintain and operate, and make it difficult to follow innovation trends in
an industrial context. To address these challenges, new information and communication
technologies are being increasingly integrated into modern control systems: radio-based
services, commercial off-the-shelf products (e.g., Windows operating systems), TCP/IP based
communications, etc. This migration towards standardized communication technologies and
open protocols has facilitated the deployment of highly connected systems and enabled
remote control and supervision of infrastructures. For instance, Supervisory Control and Data
Acquisition (SCADA) systems are largely deployed in various industries. Although this has
increased efficiency and reduced costs for industrial operators, the overall infrastructures have

2

become vulnerable to external malevolence. Indeed, with their increasing complexity and
interconnection, modern industrial control systems are exposed to new security-related threats
like cyber-attacks.
For a long time, much attention has been focused on safety concerns related to highly critical
systems with large impacts on their environments. However, only accidental components
failures or software errors were traditionally addressed in safety analyses. Today, in this
context characterized by the migration of industrial infrastructures towards digital control
systems, system safety can also be compromised by security breaches and electronic attacks.
It is consequently no longer sufficient to address accidental threats of such systems, threats of
intentional origin need to be covered as well. In line with the definitions in [1], we associate,
in the remainder of this article, safety with accidental risks originating from the system that
could result in unacceptable consequences on the system’s environment. Security is related to
malicious risks and we are mainly interested in cyber-security.
Although both safety and security communities deal with risks and share the same goal of
protecting industrial infrastructures, they are still working separately. Yet, for industrial
infrastructures having safety issues and being supervised and controlled by modern ICS such
as SCADA, safety and security requirements and risks converge and can have mutual
interactions [2]. Indeed, security related requirements and risks can influence the system
safety and inversely safety related requirements and risks can influence the system security.
To address these challenges, a joint risk analysis framework considering both safety and
security aspects has become essential. It enables exhaustive coverage of risks related to safety
and security and identification of their potential interdependencies. As a result, it conditions a
thorough and optimal risk management as well as cost and resource optimization.
We provided in [3] a survey of approaches, from industrial and scientific communities, that
combine safety and security issues for industrial systems. These approaches have been
evaluated in [4] according to the four following criteria which we believe essential for a good
modeling approach:

1. enables formal modeling of the system architecture, and the related attack and failure
modes;

2. yields both a qualitative and quantitative analysis;
3. automatically generates attack and failure scenarios that lead to a given undesirable

event, from a description of the system architecture;
4. makes it possible to easily consider different hypotheses about the same system

architecture and regenerate the new risk related scenarios.
Considering the limitations of existing approaches with respect to these criteria [4], we
propose, a new model based approach, that we call S-cube, for SCADA Safety and Security
joint modeling. The S-cube approach has already been introduced in [4] [5]. In this paper, we
give the details on the rationale behind this approach and the different purposes for which it
can be used. The remainder of this paper is organized as follows: Section 2 presents the
related work on existing safety “only” and security “only” domain specific languages that
inspired the S-cube approach. Section 3 describes the specificities of industrial control
systems. Section 4 describes the S-cube principle. Section 5 explains the rationale and
assumptions taken for the S-cube knowledge base (KB). Sections 6 and 7 address the
qualitative respectively quantitative aspects in this knowledge base. Section 8 shows how the
S-cube approach has been implemented and illustrates it on a case study. Section 9 concludes
the paper and gives perspectives.

3

2. Related work on existing Security/Safety domain specific
languages

Safety and security have been for a long time treated separately within distinct communities.
The standards and tools related to each discipline have also been distinct and separate. In this
section, we give an overview of existing domain specific languages (DSLs) for safety or
security. DSLs aim at capitalizing knowledge on a specific domain, thus speeding up the
construction of models in that domain.

2.1 Security domain DSLs

Our exploration focused on two main approaches that are based on security DSLs and enable
automatic processing of system models: the Cyber Security Modeling Language (CySeMoL)
[6] and the Multihost, multistage Vulnerability AnaLysis (MulVAL) [7]. These two
approaches have inspired building the S-cube KB.

The CySeMoL [6] is an attack graph tool that can be used to assess the cyber security of
enterprise architectures. It allows users to create models of their architectures and make
calculations on the likelihood of different cyber-attacks being successful. The CySeMoL
approach enables modelling of only IT components and the security-related risks. The
possibility of extending CySeMoL in order to cover both safety and security had been
considered but discarded for the following reasons:
- the CySeMoL metamodel is too comprehensive and enriching it with new elements

requires rethinking all the dependencies and relationships between the metamodel’s
elements;

- the quantification process is a Monte Carlo based calculation of a Bayesian network. As a
result, it does not allow dynamic aspects of the attack to be modelled and in particular its
evolution over time (mean time until success). Instead, all parts of the metamodel assume
that the attacker has one week to perform the attack;

- the calculation engine is not open source.

 The MulVAL tool [7] is another attack graph tool used for security-related vulnerabilities
assessment. It includes an engine that enables automatic generation of attack graphs, given the
network configuration and security advisories given by a network scanner that identifies
vulnerabilities on each host. This engine uses a set of reasoning rules that specify exploit
rules, compromise propagation and multi-hop network access. MulVAL is essentially
qualitative: its main output is a logical attack graph, i.e. a logical structure that can be
enriched by metrics providing an assessment of the difficulty of various attack steps. Hence
one can see that “logical attack graph”, as used in [7], is just another name for an attack tree.
Like CySeMoL, MulVAL does not consider safety issues. The possibility of extending
MulVAL for safety and security joint modeling seems difficult to us for the following
reasons:
- MulVAL adopts the Datalog language, which is a non-typed language; this makes it

difficult to track the different modeling elements especially for complex systems and to
associate them with their characteristics. We believe that an object-oriented language is
more appropriate to this purpose;

- MulVAL uses non-user-friendly tools. All inputs have to be in textual form, and the
“graphical” output is hardly usable for complex systems;

4

- The quantification of MulVAL models is too simplistic and could not be extended to
safety related parts of a model.

We also had a look at DSLs designed for the formal definition and verification of protocols
such as Proverif [8] but we could quickly discard them because they are limited to the
specification and verification of security properties related to cryptographic protocols.
Modeling higher level and abstract aspects of the system is not possible with such highly
specific languages.

2.2 Safety domain DSLs

In the safety domain, there are two “levels” of domain specific languages: generic languages
that enable knowledge bases to be built as libraries of classes and those libraries themselves
that enable system models to be built.
Figaro [9], AltaRica [10] and AADL [11] are generic languages which have been designed for
modeling systems and facilitating the safety analysis associated with them.
Figaro will be presented in Section 8.1. The Boolean logic Driven Markov Processes (BDMP)
formalism [12] and the S-cube KB (cf. Section 5) are examples of libraries implemented using
this language. Similar to Figaro, AltaRica is a high-level language that enables models of
systems to be created. The main difference between the two languages [13], resides in the fact
that Figaro enables the conception of generic modeling libraries that can be used by engineers
through graphical user interfaces, without the need to manipulate the language itself; while
AltaRica enables the reuse of some elements specified in libraries but always requires the
system analyst to add some AltaRica code. Figaro is hence more user friendly.
To summarize, Figaro and AltaRica are generic DSLs, helping the definition of more specific
DSLs in the form of libraries. There are several examples of Figaro libraries that have been in
use at EDF1 for many years, to carry out safety studies of systems, mainly from the thermo-
hydraulic and electrical domains.

The Architecture Analysis & Design Language (AADL) [11] is quite different from both
Figaro and AltaRica. It is dedicated to the description of electronic systems and explicitly
refers to software and hardware, buses, buffers, processors etc. It was first published as SAE
Standard AS-5506 in November 2004. Version 2.1 of this standard was published in Sept
2012. The AADL Error Model V2 (EMV2) is an error annex focused on safety analyses. It
enables the extension of the architecture models with error types and error propagation rules
that can be used to produce automatically Failure Mode and Effects Analysis (FMEA) and
fault trees. By looking at the automatic translation of an AADL model into AltaRica, [14]
shows that complicated and cumbersome constructions in AADL can be written in a more
concise way in AltaRica (the same would apply for Figaro). But the essential difference
between AADL and Figaro or AltaRica is the fact that nothing in EMV2 allows to model a
dynamic behavior of the failures propagation. The same limitation applies to EAST-ADL,
another language similar to AADL, but even more specialized, for the automotive industry.

The S-cube approach is based on a new knowledge base (KB) or DSL that gathers expertise
on industrial information and control systems and the associated safety and security aspects.
This knowledge base (KB) is the core of the S-cube approach. It incorporates some notions
inspired from the existing DSLs previously mentioned but tries to overcome at the same time

1 EDF: Electricité de France is the largest producer of electricity in France. It also covers a part of the European Union’s electricity demand.

5

some of their limitations. The S-cube approach aims at providing a common framework for
dealing with the convergence of safety and security risks in modern control systems in order
to capture their mutual interactions.
We provide in the next section an overview on Industrial Control Systems and their safety and
security requirements which represent the basic notions modeled by the S-cube KB. We
particularly underline the specificities related to industrial security compared to security of
Information Technology (IT) systems.

3. Industrial Control Systems: specificities and requirements

3.1 ICS: definitions and Enterprise Architecture topology

We first define what we call ICS and then give an overview on the Enterprise Architecture
topology encompassing these control systems.
The term ICS covers a large variety of control systems among which we find SCADA
systems used generally for systems with a wide geographical range.
In the rest of this document, we use the term ICS to designate whatever control system is used
to control an industrial system and the term SCADA particularly for digital systems used to
supervise and control industrial infrastructures.
The Perdue Enterprise Reference Architecture (PERA) provides a reference model for
Computer Integrated Manufacturing [15] that divides the enterprise architecture into different
layers based on organizational hierarchy.

Figure 1: Typical components of modern control architectures [16]

6

Inspired from PERA, IEC 62264-1 [17] provides a model for the enterprise that splits the
architecture into five key levels2, based on functional hierarchy:

• Level 0: the physical process;
• Level 1: functions involved in sensing and manipulating the physical process;
• Level 2: functions involved in monitoring and controlling the physical process;
• Level 3: functions involved in managing the work flows to produce the end-products;
• Level 4: functions involved in business-related activities needed to manage the

manufacturing organization.
This functional decomposition can be mapped to the real enterprise architecture where
components ensuring these functionalities are placed in the corresponding level. Devices that
are directly involved in the industrial control process are particularly located at levels 1 and 2.
[16] depicts the typical system components of modern control architectures as illustrated in
Figure 1 (Level 0 is not presented as it depends on the nature of the industrial system).
Given the evolution of the industrial control infrastructures and the integration of advanced
technologies, we can find intelligent sensors that ensure both the functionalities of
measurement and process control; and can therefore be considered to belong to level 1 and 2.
Particularly, in smart grids, communicating smart sensors can be used to control the process
of electricity distribution. Contrary to the classical hierarchical architecture, we then have a
“flat” architecture where control is distributed between the different components.
In the following section, we give an overview on ICS specificities and underline the
differences between securing traditional IT systems and securing ICS.

3.2 ICS specificities and security challenges

As ICS integrate new Information and Communication Technologies traditionally used in
Management Information Systems, they consequently inherit their vulnerabilities. However
ICS have their own specificities: they are time-critical as they monitor generally real-time
processes, they require high availability and need to be fault-tolerant.
These ICS characteristics that differ from traditional IT systems imply different security risks
and priorities. Security requirements for traditional IT systems, ordered with decreasing
priority are respectively Confidentiality Integrity and Availability (CIA). This priority order is
inversed when it comes to control systems (AIC):

- Availability: control and process data should always be available to guarantee the
good execution of the industrial process;

- Integrity: control and process data (generated, transmitted, displayed and stored)
should be genuine and intact;

- Confidentiality: data confidentiality is desirable in the industrial context but not of
paramount importance. Unlike availability and integrity problems, data disclosure
should not induce safety related issues, but may impact the enterprise image.

Unlike traditional IT systems, ICS are on the first frontier facing human lives and ecological
environment. Security properties and requirements applied for IT systems are consequently
not completely adapted to control systems and need to be adjusted taking into consideration
ICS specificities.

2This standardized decomposition can, however, differ between different industries and communities.

7

The S-cube approach’s main goal is to provide a DSL that catches ICS specificities and the
related safety and security risks into a common framework. We present in the next section the
main principle of this approach

4. S-cube principle

S-cube enables a joint safety and security risk analysis for systems having safety challenges
and integrating new information technologies and particularly SCADA-based ICS.
Seen as a black box, the S-cube approach, depicted in Figure 2, takes as input the system
architecture and gives as output the attack and failure scenarios that are likely to happen on it
and that may lead to a given undesirable event. Undesirable events associated with a given
system can be identified in advance by some safety systematic techniques such as FMEA.
These events represent risks with intolerable consequences that can happen to the system and
lead to safety issues (human losses, environmental and ecological impact, or high economic
losses).
The S-cube approach relies on a knowledge base, called S-cube KB (cf. Section 5), that
gathers expertise on ICS and particularly SCADA systems and their associated safety and
security aspects. The S-cube KB can be seen as a DSL or a library that enables the typical
components of digital industrial infrastructures to be described, including corporate enterprise
network, industrial control network, field and instrumentation networks; and the related
security mechanisms (authentication, access control, etc.) and safety mechanisms
(redundancy, voters, etc.). Each component is associated with the attacks and failure modes
that can happen on it (cf. Section 6). The effects of these failures and attack steps are
described as well as the way they can propagate within the overall system architecture.

Figure 2: The S-cube approach principle

The generic models of the S-cube KB are instantiated on the input system architecture. This
instantiation results in a textual model which can be processed by calculation engines that
automatically generate attack and failure scenarios, with an estimation of their probabilities.

5. The S-cube knowledge base

We explain in this section the rationale used in building the S-cube KB, and the main notions
modeled.

5.1 Rationale

We have chosen to model in the S-cube KB the following aspects related to industrial
architectures:

8

5.1.1 Modeling the enterprise levels

The five enterprise architecture levels of the PERA decomposition (c.f. Section 3.1) are
modeled in the S-cube KB as follows:
o The physical process (level 0 in the PERA decomposition) is not modeled as the S-cube

KB aims at modeling ICS regardless of the kind of physical system they control. It rather
includes modeling risks having impacts on the physical process (safety issues). It can be
later coupled with other knowledge bases describing a specific industrial domain, for a
better visibility on the physical impacts of attack and failure scenarios.

o The field level: (level 1 in the PERA decomposition) comprises devices that are close to
the industrial process. These devices can be either sensors or actuators. Sensors are
devices used to measure physical quantities like pressure, speed, temperature, etc.
Actuators are devices that act directly on the physical process e.g., valves, pumps, circuit
breakers;

Level 2 in the PERA methodology is split into the process and the supervision levels.
o The process level: comprises automation devices that enable the monitoring and control

of the industrial process. In this level, we find typically Programmable Logic Controllers
(PLC) and Remote Telemetry Units (RTU);

o The supervision level: comprises SCADA servers and remote supervision devices that
enable a global view and control the process level;

o The IT level: comprises machines integrating information technologies. For modern
control systems, information technologies are also integrated in control devices (e.g.
SCADA servers, process controllers).

This decomposition is based on the functional specificities of each level with respect to
control. Each level can consist of one or many networks.

5.1.2 Modeling the network zones

A network zone, in the S-cube KB, models a set of machines that are allowed to exchange
information between one another using either a wired or a wireless communication
technology. Examples of network zones could be the field network that connects sensors and
actuators to process controllers and carries their data exchange.

5.1.3 Modeling the hardware/software system components
The functional architecture, described in § 5.1.1, does not necessarily map to the physical
architecture of the system. For this purpose we have chosen to differentiate in the S-cube KB
between software and hardware components. Hardware (also called physical) components
correspond to the physical architecture of the system while software components make
explicit a functional viewpoint of the system.
We model, with the S-cube KB, the different physical machines (hardware) connected to each
network zone. We then associate the physical machines with the services (software) running
on them. This distinction between software and hardware allows an appropriate level of detail
for which failures and local attacks like physical access are associated with the physical
machines and remote cyber-attacks exploiting vulnerabilities are associated with the software
component which houses a specific vulnerability.

5.1.4 Modeling control data flows
Finally, we include in the S-cube KB, the modeling of data flows between the software
components in the system architecture. Acquisition, control and supervision being the

9

fundamental functionalities of a SCADA system, we address more specifically control data
flows.
After defining the different levels of the system architecture in § 5.1.1 we started modeling
the typical components of each level and their contribution to the control dataflow:

• At the field level, sensors measure physical quantities of the industrial process and
send measurements to the process controller. Actuators receive instructions from the
latter and act accordingly on the industrial process. To keep the S-cube KB as generic
as possible and representative of control systems in any industrial domain, we have
chosen not to model a specific industrial process. The KB can however be coupled
with other DSLs that describe the dynamics and behavior of a specific industrial
system.

• At the process level, the process controller (e.g., PLC, RTU) receives measurements
from the sensors, processes data and sends instructions to actuators, if necessary. On
the other hand, it sends feedback on the process status to the supervision station and
potentially receives instructions from it. In some architectures, process controllers can
exchange orders/feedback with one another;

• At the supervision level, the operator station receives feedback from different process
controllers, providing a centralized view of the physical process, and sends back
instructions;

• The IT level initially models systems that enable the optimization and management of
the business process. Such systems are not supposed to have a direct impact on the
control process. Yet, as modern controllers and SCADA servers integrate information
and communication technologies (e.g., ftp servers, TCP/IP based communications),
we make both the supervision and process levels inherit the IT characteristics.

We also distinguish between two types of control data3:
• Instructions: this data is sent by system components having a control functionality

(such as process controller, supervisor, etc.) to field devices in order to execute an
order;

• Feedback: this data is sent by field devices to acquisition, control and supervision
components in order to report a status of the system; it can be either a measurement or
an alarm.

In addition to this level of detail, the S-cube KB models the data flow direction with respect to
a given component; whether it is an input flow (data received) or an output flow (data sent).

We discussed in Section 3.2 the specificities and challenges of ICS in terms of time criticality
and stressed the importance of data availability and integrity of control data flows. Indeed,
control data flows should be available and unaltered in order to ensure the normal operation of
the industrial process. Otherwise, data alteration or unavailability can result in safety-related
issues. In the S-cube KB, we study and propagate the effects of attacks and failures on the
data flow’s integrity and availability. For example, a jamming attack on a wireless network
would lead to unavailability of all data flows carried by this network.

We show in the next section how the different aspects described above have been aggregated
into the S-cube KB by explaining the metamodel used to build this KB.

3 This distinction was added in the KB for more accuracy on attacks impacting data flows in the process and field levels.

10

5.2 Metamodel

The S-cube metamodel, depicted in Figure 3, gives an overview on the hierarchy of classes
modeled in the S-cube KB. It models the typical components of digital industrial
architectures. Each class is represented with a “box” and models a system element template.
The S-cube KB adopts the Figaro modeling language (cf. Section 8.1). Being object oriented,
Figaro allows knowledge to be structured using the inheritance mechanism and the
metamodel to be built progressively. The latter can also be extended in order to refine details
about the system.
Each class of the metamodel is associated with its attributes as well as the attacks and failure
modes likely to happen on it. Attributes are represented in Figure 3 by small horizontal
rectangles. The type of these attributes is put in brackets or braces for enumerated types. The
attributes for which the type is not mentioned are Boolean (can have either the value True or
False). The gear wheels icons model the dynamic behavior of the attack steps and failure
modes associated with each class.
We explain in the following paragraphs the main steps followed for building the knowledge
base. We stress the key modeling elements of the S-cube metamodel and the assumptions
made in order to have the appropriate level of detail. This level of detail has been chosen in a
way that ensures a compromise between the generality of the knowledge base and the
relevance of the results obtained. A too coarse level of detail, which is the case of generic
approaches identified in [3], does not provide sufficient knowledge about the attack and
failure scenarios. On the other hand, a too fine level of detail would make it difficult to update
models and result in combinatorial explosion in their processing. We have chosen in the S-
cube KB to cover accidental and malicious risks with a level of detail able to provide an idea
of the risk scenarios. More detailed models can be used for analyzing in depth security issues
like access control [18] or cryptographic protocols [8].
In the explanations below, classes modeled in the knowledge base and the associated
attributes are put in Italic font.
We first model, with the generic class component, a system component which can fail
accidentally or be compromised by an attacker. Accidental failures can be repaired by
maintenance actions (cf. Section 6.1). The classes network_zone and physical_cpt inherit the
characteristics of the mother class component, and model respectively a network zone (cf. §
5.1.2) and a physical component (cf. § 5.1.3). The physical component models a machine
(hardware) connected to a network zone and that hosts one or many software components
(software_cpt). Identical physical components that can fail simultaneously due to a common
cause are associated with the same CCF_group (cf. § 6.1.2).
Following the system decomposition presented in § 5.1.1, we make the distinction in the S-
cube KB between field system components, process system components, supervision system
components and finally IT system components. They model generically the physical machines
of each system level. Actuators and Sensors are field system components, while
process_controller (e.g., Programmable Logical Controller) is one of the process system
components. An IT system component (IT_sys_cpt) models a physical machine integrating
advanced IT typically running an operating system (OS) and hosting IT software components.
As discussed in § 5.1.1, the process_controller inherits from the IT_sys_cpt class.
 Furthermore, we model the following software components:

• a sensor software component (sensor_soft_cpt)models the software capturing and
reporting the physical measurements;

• an actuator software component (actuator_soft_cpt) models the software receiving and
executing the process controller instructions;

11

Figure 3: The S-cube metamodel

12

• a process controller software component (process_controller_soft_cpt) models the
software receiving and processing sensors measurements, and sending orders to
actuators;

• a scada server software component (scada_server_soft_cpt) models the software
supervising the process controllers, through receiving feedback and sending
instructions;

• an IT software component (IT_soft_cpt) models a software component from the IT
domain and not directly used for control purposes (e.g., ftp client, http server).

Software components exchange data flows (data flow) (cf. § 5.1.4). With S-cube, the user
models graphically only the legitimate data flows allowed by firewalls. The firewalling
functionality is enabled or disabled by the gateway binding two or many networks.
An IT_soft_cpt can host one or many vulnerabilities. Each vulnerability has one or many
consequences among the following: privilege escalation, confidentiality loss, integrity loss or
denial of service.
A vulnerability can be associated with a software component or with a physical machine. In
the latter case, the vulnerability models a bad machine configuration (e.g., system files not
write-protected) which is assumed to allow privilege escalation when exploited by an attacker.

We assume, in the S-cube KB, that an IT machine is said to be compromised if an attacker
manages to have root privileges on it. If that is the case, he/she can compromise all software
components running on this machine. This assumption is credible as compromising one
software component on a machine does not allow the attacker to compromise all other
services unless he/she succeeds in obtaining root privileges.

For IT level networks such as the corporate network, we are interested in the attack
propagation between different IT level machines until some component having a control
action on the process is reached. When reaching the control network, we are more interested
in data integrity/availability as the modification or unavailability is generally the main reason
leading to undesirable events.
Access Control is modeled by associating an authentication_mechanism with a machine (e.g.,
a login/password is required in order to log into the OS), a network (e.g., WEP/WPA2
authentication) or an application (e.g., ftp server needs to authenticate with the ftp server in
order to read/write files).
In the following section, we give the taxonomy of the different attack vectors embodied in the
S-cube KB.

5.3 Taxonomy of attacks

The S-cube KB has been built upon a taxonomy of attack vectors that allows reasoning about
attacks at a higher level rather than a simple list of vulnerabilities, which guarantees the
coverage of all types of attacks. The hierarchical thinking methodology was adopted when
building the knowledge base; it consists in starting at first from a high level of abstraction and
progressively refining the levels of detail. The fundamental mechanism of abstraction allows
us to deal with the complexity of systems and the myriad of vulnerabilities they are subject to.
Our experience with BDMP applied on the industrial use cases like the pipeline example
described in [19] revealed some patterns of typical attacks on the control and field levels. The
attack taxonomy in the S-cube KB was inspired from these patterns, but also from other

13

existing DSLs like CySeMoL, MulVAL (cf. Section 2.1) and the Ethical Hacking and
countermeasures Courseware (CEH) [20].
The CEH courseware [20] states the five following steps required for a successful attack:

1. Foot-printing and reconnaissance;
2. Scanning;
3. Gaining access;
4. Maintaining access;
5. Clearing track.

We map these steps with what has been modeled in the S-cube KB. The foot-printing and
reconnaissance phase can be modeled in two ways: either by the attack step “preparing for the
attack” associated with the attacker template, or by the attack step “access” associated with a
physical component in the system. For this second case, the rate of this attack step combines
the frequency of attack occurrence and the time needed for the attacker to collect information
about the target network. The scanning step (Step 2) is included in the different paths used by
the attacker to access the system. The different ways for the attacker to gain access to the
system (Step 3) are given hereafter. Steps 4 & 5 are not relevant in our context, as we are
interested in successful attacks leading to safety issues; these steps are consequently not
modeled by S-cube KB.
The taxonomy of attack vectors used in the S-cube KB addresses the different entry points
used by the attacker in order to access the system. We believe that the attacker should initially
have some sort of physical access, whether local or remote, to a machine or a network zone
related to the system architecture in order to try some attack scenario. We considered the
following entry points (EP) from which an attacker can gain access to the system:

- EP1: physical access to the network. If the network is wired (e.g., Ethernet-based), and
the attacker has physical access, he/she can plug into the network and manage to
connect to the switch/hub via the wired link (e.g., Ethernet cable). If the network is
wireless, the attacker should be able to capture the network traffic; which may require
that he physically moves next to the access point. If the network employs an
authentication mechanism, the attacker has to additionally bypass authentication in
order to reach other machines connected to the same network. The network is said to
be compromised;

- EP2: physical access to a machine connected to the network. If the attacker has
physical access to a machine connected to the network and he manages to bypass
authentication, if it is employed (by the machine OS and/or by the network), the
machine is said to be compromised. If a network hosts a compromised machine it is
also said to be compromised, which means that the attacker can reach (i.e. send
packets to) any other machine connected to the same network;

- EP3: the network is remotely reachable via another compromised network. If the
network is connected to a gateway which does not enable firewalling and which is
connected to another compromised network, the attacker can then scan the network in
order to identify live systems and open ports (e.g., ICMP scanning). He can then
either:
o EP 3.1: access via a vulnerable service. If there is vulnerable software which is

reachable via compromised software communicating with it or which is located on
a compromised machine or a compromised network zone, then the attacker can
exploit this vulnerability in order to penetrate the system;

o EP 3.2: access via a vulnerable machine. If a machine is not correctly configured
or is running a vulnerable OS and it is reachable by the attacker (it is located on a
compromised network or running a compromised software or the attacker can

14

physically access the machine) then the attacker can exploit this vulnerability in
order to gain root privileges.

The network is said to be compromised if the attacker can reach any machine connected to the
network zone. We assume that if the attacker can access the network (through the vectors
listed above) than he can reach any machine connected to the same network.
We gave in this section the different entry points that can be used by the attacker to access the
system. The attack step “access” associated with a physical component of the system (which
can be a machine of a network zone) is the initiating vector in attack scenarios generated by
the quantitative analysis. The remaining steps describe how the attack propagates given the
system configuration.
We give more details in the next two sections on the qualitative and quantitative aspects
included in the S-cube KB.

6. Qualitative aspects in the S-cube KB

The S-cube approach has advantages both for building system models and processing them.
First the system architecture is modeled using the templates corresponding to classes defined
in the S-cube KB (cf. metamodel in § 5.2). This model can be either graphical or textual. Next
the KB is instantiated on the system model and the resulting instantiation is processed with
quantification tools which yields a qualitative and quantitative analysis.

The qualitative part of the analysis consists in generating the attack and failure scenarios
likely to happen on the system model and that can lead to an undesirable event initially set by
the user. The quantitative part, depicted in Section 7, allows these scenarios to be sorted
according to their decreasing probabilities and gives an estimation of the undesirable event
probability. This undesirable event represents the ultimate risk leading to safety issues and
that we want to avoid for the system. We therefore exclude from the scope of our analysis
stealthy attacks that only decrease the performance of the system or have marginal
consequences on the system.
Ideally, the assessment of a cyber physical system should take into account the failures and
attacks of the control system via their effects on the physical process (since safety issues can
arise only because of an unwanted behavior of the physical part). This would require
dedicated models for each use case. For example in [21], the effects of attacks on power grids
are examined. Since we wanted to focus on the control part, for which we could define
generic models, we only distinguish two categories of effects on the physical system: the fact
that actuators receive incorrect (i.e. falsified in the case of an attack) instructions or no
instructions at all. It is then a pessimistic approximation to consider that one (or both) of these
malfunctions inevitably lead to an undesirable event, from a safety perspective.
In the remainder of this section, we give the types of failures and attack steps modeled in the
S-cube KB. The risk scenarios output by S-cube are built from these generic failure modes
and attack steps.

6.1 Failure modes and repair

We address in the S-cube KB accidental failures which can be either independent or
dependent.
6.1.1 Failure in operation (independent events)
The S-cube KB models for each system component the accidental failure in operation which
may occur randomly and independently from other components failures. This failure is

15

associated with network zones and different physical machines (i.e. hardware failures). We
assume in the current version of the knowledge base that software always functions in a
deterministic and dependable way if not altered by third-parties (which excludes software
bugs and crashes from our scope).
6.1.2 Common cause failures (dependent events)
A Common Cause Failure (CCF) is the failure of multiple components that result from a
single cause, like for example a fire, a flood, an earthquake, etc. This cause is shared by a
given set of components and can be related for instance to the design, the software, the
environment, etc.
In safety-critical systems, redundancy is often introduced to improve reliability. However, the
intended effect may be reduced when components are subject to common cause failures.
According to expert judgment, CCFs account for 1 to 10% of a component’s failure rate [22].
It is consequently important to consider this kind of failure in the safety analysis in order not
to overestimate the system reliability.
We model in the S-cube KB CCFs which we associate with physical components, and which
represent dependent failures that may occur at the same time or within a short time interval,
due to a shared cause.
6.1.3 Repair actions
The S-cube KB includes the modeling of maintenance actions aiming at repairing the
accidental failures of the physical components. Once repaired, these resume their normal
operation.
We present in the next sub-section the attack steps modeled in the S-cube KB. An attack
scenario generated by S-cube will consist of one or several attack steps among the following.

6.2 Attack steps

In addition to failure modes previously described, we summarize in Table 1 the attack steps
associated with each class as described in the metamodel in Figure 3. Classes describing
physical components are in blue and classes corresponding to software components are in
green.

Class Attack steps / Failure modes

component
(generic class)

Accidental failure: models an accidental failure, in operation, of a given
system component (cf. § 6.1.1);
Failure repair: models the repair of the accidental failure of a system
component;
Access: models physical access of the attacker to the component.

network_ zone
(inherits from
component)

Jamming attack: models a jamming attack on a wireless network;

Scan network: models the attacker scanning the network in order to
identify live systems and open ports;
Establish connection: models the attacker establishing illegitimate
connection with an open port;
Bypass authentication: models the attacker bypassing authentication to
the network. We distinguish between weak and strong authentication.

physical_cpt
(inherits from
component)

Common Cause Failure: models the failure of the physical component
due to a common cause (cf. § 6.1.2);
Compromise communication link (Man In The Middle attack): models
the attacker compromising the communication link between two
machines;

16

Bypass authentication: models the attacker bypassing authentication to
the OS of a physical machine. We distinguish between weak and strong
authentication.

IT_sys_cpt
(inherits from
physical_cpt)

Privilege escalation: models the attacker exploiting a bad configuration
or a vulnerability related to the OS in order to escalate privileges.

process _controller
(inherits from
IT_sys_cpt)

No attack or failure specific to this class.

sensor (inherits
from physical_cpt)

No attack or failure specific to this class.

actuator (inherits
from physical_cpt)

No attack or failure specific to this class.

software_cpt
(generic class)

 No attack or failure specific to this class.

IT_soft_cpt
(inherits from
software_cpt)

Bypass authentication: models the attacker bypassing authentication
required by an IT software component (e.g., ftp server). We distinguish
between weak and strong authentication;
Exploit vuln priv escalation: models the attacker exploiting a
vulnerability that results in privilege escalation;
Exploit vuln integrity loss: models the attacker exploiting a
vulnerability that results in integrity loss;
Exploit vuln denial of service: models the attacker exploiting a
vulnerability that results in denial of service;
Exploit vuln confidentiality loss: models the attacker exploiting a
vulnerability that results in confidentiality loss.

scada_server_soft
_cpt (inherits from
IT_soft_cpt)

Send false instructions: attacker falsifies instructions sent from SCADA
server software;
Send no instructions: attacker removes instructions sent from SCADA
server software;
Send false feedback: attacker falsifies feedback sent from SCADA
server software;
Send no feedback: attacker removes feedback sent from SCADA server
software.

process_controller
_soft_cpt (inherits
from IT_soft_cpt)

Send false instructions to actuator: attacker falsifies instructions sent
from process controller software;
Send no instructions to actuator: attacker removes instructions sent
from process controller software;
Send false feedback: attacker falsifies feedback sent from process
controller;
Send no feedback: attacker removes feedback sent from process
controller software.

sensor_soft_cpt
(inherits from
software_cpt)

Send false measurements: attacker falsifies measurements sent from
sensor;
Send no measurements: attacker removes measures sent from sensor.

actuator_soft_cpt No attack or failure specific to this class.

17

(inherits from
software_cpt)

Table 1: Failure modes and attack steps modeled in the S-cube KB

The attack steps modeled, so far, in the S-cube KB have been discussed with security
engineers. They are consistent with the level of detail at which we have decided to stop. This
list is not, in fact, exhaustive; the knowledge base can be further extended with other
“categories” of attacks and existing attack steps can be decomposed into more detailed attack
steps.
We explain in the next section how accidental and malicious scenarios are generated from the
system architecture and the S-cube KB.

6.3 Attack and failure scenario generation

After the system architecture is described, the S-cube KB is instantiated on it. This
instantiation generates a textual model, which constitutes a virtual definition of the state space
of the system (all the states in which the system can be). This state space is defined locally, by
the list of possible transitions from any state and the states they lead to.

The textual model can be explored in two ways:
- Using a path-based exploration algorithm, the state space is explored step by step.

Starting from the initial state, we explore the tree of all possible paths in a depth left
first manner. The exploration of one path is terminated if one of the following cases is
reached: the targeted state, an absorbing state or one of the truncating criteria. The
principle of this algorithm is illustrated in Figure 4. If the explored state graph is in
fact a Continuous Time Markov Chain (CTMC) then probabilities calculated
analytically can be associated with sequences; this gives on one hand a relevant
criterion to eliminate most sequences, which makes the exploration tractable, and on
the other hand an estimation of the probability of reaching a target state before a given
time.

- Using the Monte Carlo method, which allows processing of any problem having a
probabilistic interpretation. Based on the law of large numbers, this method simulates
many histories of the system using repeated random sampling. These histories yield
independent and identically distributed realizations of a numerical variable of interest.
By calculating the average of these realizations, one obtains an estimator of the mean
of this variable’s distribution. If the variable is Boolean, its mean value is equal to the
probability that the variable takes the value 1. This is how the probability of the
system being in a target state can be estimated.

The qualitative analysis exhaustively generates all the scenarios leading to the undesirable
event specified. We can distinguish three kinds of possible scenarios:

- Purely accidental scenarios: which consist only of accidental component failures;
- Purely malicious scenarios: which consist only of attack steps;
- Hybrid scenarios: which consist of a mixture of accidental failures and attack steps.

The number of scenarios can easily be huge and unmanageable especially for large systems.
In order to be exploitable, the qualitative results should be associated with some quantitative
parameters that enable sorting and prioritization of the most probable scenarios. In the next
section, we give the hypotheses taken for the safety and security metrics associated with

18

failure modes resp. attacks modeled in the S-cube KB and that are the basis of the quantitative
results obtained.

Figure 4: Sequence exploration principle

7. Quantitative aspects in the S-cube KB

We have already shown in [19] the advantages of building a common probabilistic model for
safety and security. In a similar vein, S-cube offers a quantitative framework, based on
probabilities, for assessing accidental and malicious risks. Each attack step and failure mode
defined in the S-cube KB is associated with a security respectively safety metric as detailed
later in this section.

7.1 Safety metrics

We explain the safety metrics associated with the failure modes described previously in
Section 6.1.

7.1.1 Independent accidental failures
In dependability analysis, the system (or component) reliability corresponds to its ability to
perform a required function, under given environmental and operational conditions and for a
stated period of time.
In the S-cube KB, we adopt the exponential approximation for the Time To Failure (TTF) of a
system component in operation. The safety metrics used in this case correspond to failure
rates (λ) of components. The Mean Time To Failure (MTTF) of a component is equal, in this
instance, to the inverse of the failure rate λ.
Data related to the failure rates can be obtained from the experience feedback on the system
components’ failures or from the manufacturer’s documentation. Experimental data may take
a long time to be made available (the range of MTTF generally is from years to decades),
especially for systems with a long service life.

19

7.1.2 Common Cause Failures
The Common Cause Failures (CCFs) have been addressed in the probabilistic risk analysis
with different models. These models use feedback of experience data in order to quantify the
probabilities of events causing the failure of a specific group of identical of components. The
transition between these models and the CCF model used in static (i.e. essentially made with
fault trees) analyses and called the Basic Parametric Model [23] is then possible. The latter is
used to evaluate the probability of the different combinations of components failures within
the same CCF group.
In the S-cube KB, we adopted the dynamic generalization of the Basic Parametric Model as
described in [24]. The number of combinations of components common cause failures, can
be quickly significant with large groups of components. For reasons of simplification, we
have chosen to model in the S-cube KB only groups of two or three components.
In the S-cube KB, the numeric values of safety metrics were assigned based on estimations of
our safety experts or based on existing studies from the literature [24][22].
In the next section, we address the quantitative aspects related to security modeling in the S-
cube KB.

7.2 Security metrics

We make the assumption that Times To Success (TTS) are, also, exponentially distributed.
Hence, security metrics used in the S-cube KB are the success rates (defined similarly to the
failure rates) of the attack steps described in Table 1. However, it is easier for experts to
reason in terms of Mean Time To Success (MTTS) that are simply the inverse of success
rates.
Unlike for failures, feedback on attacks is not easy to obtain. Industrial companies often
refuse to communicate about their experience with attacks as this can infringe their image.
Quantitative security data are consequently less available and can be subject to large
uncertainties. Security metrics are, in addition, intimately linked to the attacker’s profile and
behavior which is difficult to predict.
Primarily, there are mainly two approaches for security quantitative assessment: approaches
based on scoring like for instance the Common Vulnerability Scoring System (CVSS) [25] or
the nSHIELD framework [26], and approaches based on probabilistic assessment [27][28]
[29].
We give in the following a quick overview on the CVSS framework and the McQueen’s
quantitative model and explain how we have exploited both of them to assess the security
metrics related to the attack steps modeled in the S-cube KB.

7.2.1 The Common Vulnerability Scoring System
The NIST [25] introduced the Common Vulnerability Scoring System (CVSS), an open
framework for scoring IT vulnerabilities. The CVSS score ranges from 0 to 10; the higher it
is, the more critical the vulnerability.
The CVSS score is calculated according to an equation as a function of the following base
metrics:

• Access Vector (AV): reflects how the vulnerability is exploited: locally, with adjacent
network access or remotely. The more remote an attacker can be to the target of the
attack, the greater the vulnerability score;

• Access Complexity (AC): measures the complexity of the attack required to exploit
the vulnerability once an attacker has gained access to the target system. The access

20

complexity can be high, medium or low. The lower the required complexity, the
higher the vulnerability score;

• Authentication (Au): measures the number of times an attacker must authenticate to
access a target in order to exploit a vulnerability. This metric can take the following
values: multiple, single or none. The fewer authentication instances are required, the
higher the vulnerability score.

• Confidentiality Impact (C): measures the impact on confidentiality of a successfully
exploited vulnerability. It can be complete, partial or none;

• Integrity Impact (I): measures the impact to integrity of a successfully exploited
vulnerability. It can be complete, partial or none;

• Availability Impact (A): measures the impact to availability of a successfully exploited
vulnerability. It can be complete, partial or none;

7.2.2 The McQueen’s model
McQueen [29] proposed a Markovian model for estimating the Time To Compromise (TTC) a
computer system through exploiting a given vulnerability. The authors model the TTC, which
they define as the measure of the effort expended by an attacker for a successful attack. They
also assume that effort is expended uniformly, as a random process composed of three
attacker sub-processes:

• Process 1: is when at least one vulnerability is known and the attacker has at least one
exploit readily available. The probability that the attacker is in process 1 is given by
equation (4):

��	 = 1 −	��	
/� (4)
Where V is the number of vulnerabilities on the component of interest, m is the number of
exploits readily available to the attacker, and k is the total number of vulnerabilities.
Assuming that the attacker is familiar with at least one of the available vulnerabilities and
has experience with at least one exploit associated with the known vulnerabilities, the
authors estimate the time required for Process 1 with t1=8 hours.
• Process 2: is when at least one vulnerability is known but the attacker does not have an

exploit readily available. Since Process 1 and Process 2 are mutually exclusive, the
probability that the attacker is in process 2 is given by equation (5):

�	 = 1 − ��	 = ��	
/� (5)
The mean time needed to complete Process 2 is modeled as the expected value of the
number of tries times 5.8 days: � = 5.8 ∗ ��; where �� is the expected number of
tries;

• Process 3: is when the attacker identifies new vulnerabilities and exploits (zero-days).
The time estimated for this process is given by equation (6):

�� = � 	
�� − 0.5� ∗ 	30.42 + 5.8 (6)

Where AM is the average number of the vulnerabilities for which an exploit can be
found or created by the attacker;

Assuming that the three processes are mutually exclusive (Process 3 only applies if Processes
1 and 2 do not apply or are unsuccessful), the overall TTC is given by equation (7):

� = 	 �� ∗ 	�� +	� ∗ 	�1 − ��	 ∗ �1 − ! +	�� ∗ 	! ∗ �1 − �� (7)

Where	! = 	 �1 − ���
	 	 : the probability that Process 2 is unsuccessful (u=1 if V=0).

We explain in § 7.2.3, how we used McQueen’s [29] model in order to assess the MTTS for
exploiting a vulnerability in a software system component.

21

7.2.3 Assumptions for security metrics
The S-cube KB includes modeling the CVSS base metrics as described below:

• (AV): the different access vectors are modeled as described in Section 5.3;
• (AC): the access complexity is included in the MTTS assessment;
• (Au): authentication is modeled by associating an authentication mechanism with a

service, a network or a host. We also model whether the authentication is weak or
strong. The MTTS of the attack step “bypassing authentication” is higher when a
strong authentication is in place;

• (C, I, A): the impact on confidentiality, integrity or availability is associated with each
vulnerability, by security experts at the system description phase. As explained in
Section 3.2, confidentiality is not too important in the industrial context and could not
lead to safety issues. Vulnerabilities having as consequences: “privilege escalation”,
“integrity loss” or “denial of service” are the most relevant when it comes to safety-
related risks and their impact on data flows integrity and availability are propagated
throughout the system model.

Other metrics that impact the MTTS are the attacker’s profile (expert, intermediate, and
beginner) and the resources (money) he/she is ready to invest in the attack. In order to meet
safety requirements, we make, in the S-cube KB, the pessimistic assumption that the attacker
is an expert and holds unlimited resources to achieve the attack.
 In S-cube KB, we considered two different random variables corresponding to TTS:

• TTS associated with the attack step access (TTS_access); which corresponds to the
time until the system is accessed by an attacker. As discussed in Section 5.3, the
attacker needs first to have some sort of access to the system in order to try some
attack scenario. MTTS_access is the mean time required for an attacker to access the
system;

• TTS associated with other attack steps given in Table 1; which corresponds to the time
required for the attacker to achieve a given attack step;

We have chosen to use, in the S-cube KB, the exponential distribution to model the TTS for
all the attack steps. We defend this choice below.
For the time after which the system is accessed by an attacker (TTS_access), the empirical
results obtained by Holm in [28] (cf. § 7.2.2) show that the exponential distribution is relevant
if TTS_access <600 days. Furthermore, the Grigelionis theorem given in [30] proves the
relevance of the exponential distribution if we make the following assumptions:

• Each attack scenario can be approximated by a point renewal process �",$ =
	���",$ �%&	�1 ≤ (≤) ; with an initial delay time �&",$;

• All delay times �&",$are independent from one another; which means that attacks that
may target the system are independent from one another;

• On the time scale, these attacks can superpose and each of the n processes (n is large
because it corresponds to the number of potential attackers) has a small contribution;

Given these assumptions, the theorem stipulates that the superposition of the n independent
renewal processes converge towards a Poisson point process. We can consequently infer that
the random variable corresponding to the minimum of the delay times	�&",$, corresponding in
our context to the TTS_access, follows an exponential distribution.
For the other attack steps, the use of the exponential distribution is not always approved for
security assessment. However, we have chosen this assumption because it makes it possible to
use Figseq (cf. Section 8.1) for the qualitative analysis (Figseq works only with Markovian
models).

22

7.2.4 Practical security metrics values
As previously mentioned, the McQueen’s [29] model (cf. § 7.2.2) has been used in order to
estimate the MTTS associated with attack steps modeling the attacker exploiting a
vulnerability of a software component in the S-cube KB. In order to use the formula (7) of
this model, we extracted statistical data4 on vulnerabilities from the Common Vulnerabilities
and Exposures (CVE) dictionary [31]. The k parameter in McQueen’s model corresponds to
the total number of vulnerabilities and the m parameter corresponds to the number of exploits
publicly available.
As previously discussed, vulnerabilities are categorized in the S-cube KB, into three main
categories, according to their consequences and impact on confidentiality (C), integrity (I) and
availability (A):

• Vulnerabilities resulting in privilege escalation (have an impact on C, I and A);
• Vulnerabilities resulting in integrity loss (have an impact on I);
• Vulnerabilities resulting in denial of service (have an impact on A).

We give, in Table 2, the data obtained from the CVE dictionary5 [31] corresponding to k and
m parameters for each type of vulnerability. We explain below how we proceeded to get this
data.

Vulnerability type Number of total
vulnerabilities (k)

Number of total exploits
publicly available (m)

Privilege escalation 3388 184
Integrity loss 2222 60
Denial of service 14791 654

Table 2: Statistical data on vulnerabilities sorted by type

For vulnerabilities resulting in privilege escalation (cf. first line of Table 2), data extracted
correspond to the type “Gain privilege” in [31].
For vulnerabilities resulting in integrity loss (the second line of Table 2), we consider from
[31] data of type “Gain information” and having a complete or partial impact on integrity. We
consider particularly vulnerabilities having a CVSS score >5; given that for vulnerabilities
with a CVSS <5 the impact on integrity is “None”.
For vulnerabilities resulting in denial of service (the third line of Table 2), we took the data
corresponding to “DoS” in [31].
We also made the assumptions given in Table 3 when using the McQueen’s [29] model.

Assumption Rationale

V = 1 In each “exploit vulnerability” attack step, the attacker exploits just
one vulnerability

AM/V = 1 We assume the attacker’s skill level is “expert”
t1= 1 The time needed for an expert to exploit a known vulnerability with

an exploit readily available is one working day
T=1 The expected number of tries is equal to one; i.e. the attacker tries to

exploit a vulnerability just once and abandons in case of an
unsuccessful attempt

Table 3: Assumptions taken for MTTS evaluation using McQueen's model

4We took this data from the CVE dictionary in August 2015
5Data has been collected since 1999

23

Given these assumptions, the MTTS obtained using the equation (7) and data in Table 2 is
approximately five days for all types of vulnerabilities (1/MTTS ~ 0.01 h-1).
For other kinds of attack steps modeled in the KB, the MTTS was estimated by our security
experts.

In the next section, we show the possible quantitative analyses that S-cube enables to
generate.

7.3 Possible quantitative analyses

The results obtained are based on the qualitative and quantitative aspects in the S-cube KB
previously described. Below, these results are also called qualitative and quantitative analysis.
The MTTS associated with the initiating “access” attack step (MTTS_access) can be
parameterized in two different ways for the two following purposes, which can be
complementary:
1) To assess, from scratch, a given architecture in order to pinpoint the different access

paths privileged by the attacker and identify the most vulnerable components. In this
case, MTTS_access is set with the inverse of the frequency of the attacks that target the
specific kind of system architecture under study (such information can be obtained in-
house from security feedback e.g., log-files). With this kind of study, the qualitative
results are the most interesting to analyze.

2) To quantify more precisely the probability of a successful attack scenario given that the
attacker has started at t=0 to target the system. In this case, MTTS_access is set with the
mean time needed for the attacker to have some physical or remote access to the system,
assuming that the reconnaissance phase was already performed. With this kind of study,
more focus is given to the quantitative analysis. The qualitative and quantitative results
provide the attack scenarios with a more accurate estimation of the time needed to
complete each scenario.

In the second kind of study, using a joint model for assessing safety and security risks
leads to results that generally promote attack scenarios. Indeed, the MTTFs used for
failure modes are very large compared to security metrics. On the contrary, in the first
kind of study, it is possible to have the same order of magnitude for both kinds of risk,
thanks to the fact that the frequency of targeting a given industrial architecture is indeed
low (fortunately); unfortunately, this metric is even more difficult to predict than other
security metrics and highly subjective as it is related to human intention.

The quantitative results are aimed at providing operators of the control systems with a
measure of the risk associated with potential attacks in order to effectively manage their
resources. The results obtained should not be considered as definitive and accurate values.
They are based on the assumptions taken for the different attacks modeled in the S-cube KB
and related to the level of detail modeled.
In the next section, we explain how the main notions of the S-cube KB above described have
been implemented and give an illustration of the approach on a use case.

8. Tool chain and use case

We first present the tool chain associated with the S-cube approach. We next illustrate it on a
use case.

24

8.1 Tool chain

In order to explain how the principles of the S-cube approach have been implemented, we
reproduce the Figure 2 given in Section 4, to which we add how each aspect has been
implemented in blue italic text. The result is depicted in Figure 5.

Figure 5: The S-cube tool chain

The S-cube KB had been implemented using the Figaro modeling language [9]. Initially
developed for reliability analysis, Figaro is an object oriented language and implements
additionally some artificial intelligence notions. Although specific to dependability, Figaro is
general enough to be adaptable for other domains and especially for security.
Figaro provides an appropriate formalism for developing knowledge bases with generic
descriptions of components. It enables, thanks to the inheritance mechanism, the knowledge
to be structured and avoids information redundancy. Each generic system component is
described with a class. A class can be compared to a mold which, when filled, gives an object
having the shape of the mold and all its characteristics.
A class consists of two parts [32]:

• A purely static and declarative part: where one finds the name of the class, the
class(es) from which it inherits characteristics, the other classes with which it
interacts, the constant characteristics and the state variables with their domains and
initial values;

• A dynamic part: where the behavior of the class is described thanks to two kinds of
rules: the occurrence rules and the interaction rules.
o The occurrence rules: describe elementary events with the conditions governing

how they are triggered and the associated probability distributions. If the
conditions of an occurrence rule are satisfied, an event can occur:

- Instantaneously: this is used in order to describe the choice between
different instantaneous transitions; each transition is associated with a
probability, and the sum of transition probabilities appearing in a given rule
must be equal to 1;

- After a time that follows a given probability distribution: in this case the
type of the distribution and its parameters are associated with the transition;

o The interaction rules: aim to propagate the effects that are the immediate and
certain consequences of an event (i.e., the firing of a transition of an occurrence
rule) in the system.

During the S-cube KB development, the Figaro classes have been used to describe the generic
components included in industrial information architectures and their main characteristics as
already introduced in Section 5.2. For each class, occurrence rules are used to model security
(attacks) and safety (failures) events that may happen to each system component (cf. Section
6). These rules contain also the probability distribution of the time after which the event will
happen (cf. Section 7). For each class, the interaction rules model the propagation of the
instantaneous effects within the whole system architecture, for instance how the

25

compromission or the failure of one component impacts other system elements (e.g., data no
longer available). We give in annex an excerpt of the class that models a network zone as
described with Figaro in the S-cube KB.
The choice of the Figaro modeling language led us to use the KB3 workbench [32] that
enables Figaro-based models to be built and processed. The KB3 tool enables graphical
elements to be associated with the different classes defined in the S-cube KB. These elements
are used to build the system architecture using the KB3 Human Machine Interface. Automatic
verification of the graphical model is performed and the correctness and coherence of the
model input is checked. For instance, if some graphical element cannot accept a certain type
of link the user is notified with an error message. The system model can also be described
textually but this requires a basic knowledge of the Figaro language and the S-cube KB.
The S-cube KB is instantiated on the graphical model of the system architecture, which
generates a textual model. This model implicitly defines a Continuous Time Markov Chain
(CTMC), since all timed transitions of the model are associated with exponential
distributions. Because of the combinatorial explosion of the states, this CTMC cannot be
exhaustively built, but it can be explored in two ways by the following quantification tools, in
order to yield qualitative and quantitative results:
- The Figseq tool: explores, step by step (cf. § 6.3), the sequences leading to the undesirable

event. Given the mission time and truncation criteria, Figseq computes an estimated value
of the undesirable event probability taking into account the contribution of the explored
sequences that led to the undesirable event, and gives also a pessimistic value taking
additionally into account the truncated sequences. The truncation criteria are specified in
the Figseq tool and can be for instance the minimum probability of the sequence or the
maximum number of the sequence branches.
Figseq can be used only in case of a purely Markovian model. The use of exponential
distributions only in the S-cube KB allows us to benefit from the mathematical properties
of the tool, and in particular the qualitative analysis yielding the attack and failure
scenarios and the use of the Harrison [33] technique to compute their probabilities;

- The Yams tool: uses the “analog”6 Monte Carlo simulation [34] on the system model to
compute an estimated value of the undesirable event probability. Any kind of probability
distribution can be associated with transitions for this tool. Yams is also able to output a
selection of simulated scenarios, but the obtained results are much more “noisy” than
those obtained with Figseq; in particular, there is no guarantee that all scenarios with a
probability greater than a given threshold can be obtained.

Before processing the Figaro textual model with quantification tools, the user defines an
undesirable event (target state). The model processing generates attack and failure scenarios
leading to the undesirable event defined, with an estimation of their probabilities.
The attack and failure scenarios are listed in a table (cf. Table 4 for example) and sorted by
decreasing contribution to the undesirable event, whose probability is also calculated. These
scenarios are composed of the attack steps and failure modes associated with each system
component (cf. Section 5.2) described in the S-cube KB.
In the next section, we illustrate the S-cube approach on a case study of a hypothetical
industrial system with its control and corporate networks in order to show its applicability and
its ability to generate a joint safety and security risk analysis.

6Analog means here: without an acceleration technique. The use of such techniques is not easy in the general case where
various kinds of probability distributions are used [34].

26

8.2 Illustration on a case study

In this section, we give the example of an industrial system with the associated control and
corporate architecture, where new information and communication technologies are used. We
first describe the architecture of the case study then we give the associated risk analysis using
the S-cube approach. In this case study, we particularly show how the S-cube approach can be
used during the operational phase of the system lifecycle in order to assess the emergent risks
and vulnerabilities.

8.2.1 Description of the case study

We consider the system architecture, depicted in Figure 6, which consists of four network
zones: the corporate network, a demilitarized zone (DMZ), the process control network and
the field network. The corporate network, the DMZ and the process control network are
separated by firewalls. The field network comprises the sensors and actuators used to sense
and manipulate the industrial process, as well as the Process Controller. The latter
communicates with an Acquisition Server via the process control network. The Acquisition
Server is used for both collecting the process data and supervising the industrial process. The
process data are stored in an ftp server (http_ftp_server in Figure 6) placed in the
demilitarized zone. An operator workstation, connected to the corporate network, hosts an
http client application which uses the data stored in the http_ftp_server for statistical and
optimization purposes. This system can be considered as a simple example containing all
levels of the PERA (cf. Figure 1).

Figure 6: The system architecture under study

We describe the system architecture, as illustrated in Figure 7 using the modeling elements
provided by the S-cube KB. The words in italic refer to classes used in the S-cube KB (cf.
metamodel in Section 5.2) or to the modeling elements used in Figure 7.

27

As previously discussed in § 5.1.3, S-cube models both the functional and logical
architectures. The functional architecture is described by the different machines, the networks
they are connected to, and the software components they are hosting (modeled with circles).
The logical architecture is addressed by modeling the data flows between the different
software components. The graphical representation of Figure 7 is based on some choices that
we made in order to have a representation with the main elements but not cluttered by too
many graphical links. Some relations between objects are not visible, but of course the user
interface allows the user to declare and inspect them in the KB3 tool.

Figure 7: The graphical model as input by S-cube

The connection of a physical machine to a network zone is modeled with a dotted black link
(link_machine_network). The association between the physical components and the software
running on them is modeled with dashed black arrows links (link_machine_soft). The solid
blue arrows model the allowed data flows between the different software components. The
firewall models the filtering policy between the two network zones it separates which implies
that only the modeled data flows can be exchanged and no other undefined data flow can be
initiated.
The field network comprises sensors: sensor1 and sensor2 and the actuator. The sensors’
measurements are sent from the sensors software components (sensor_soft_cpt_1 and
sensor_soft_cpt_2), to a voter (k/n gate), which sends the measurement to the
process_controller_soft_cpt (the process control software running on the

k/n

voter_k_o_nvoter_k_o_n

sensor_1sensor_1 sensor_2sensor_2

field_networkfield_network
sensor_soft_cpt_1sensor_soft_cpt_1 sensor_soft_cpt_2sensor_soft_cpt_2

process_controllerprocess_controller process_controller_soft_cptprocess_controller_soft_cpt

actuatoractuator

actuator_soft_cptactuator_soft_cpt

scada_server_soft_cptscada_server_soft_cpt

acquisition_serveracquisition_serverprocess_control_networkprocess_control_network

IT_soft_ftp_clientIT_soft_ftp_client

IT_soft_ftp_serverIT_soft_ftp_serverhttp_ftp_serverhttp_ftp_server

IT_soft_http_serverIT_soft_http_server

operator_workstationoperator_workstation

IT_soft_http_clientIT_soft_http_client

industrial_networkindustrial_network

priv_escal_vulnpriv_escal_vuln

integrity_vulnintegrity_vuln

gateway_1gateway_1

gateway_2gateway_2

dmzdmz

28

Process_Controller). The latter sends back instructions to the actuator_soft_cpt which
executes the action on the process. The field network uses a wireless communication to
exchange data between the process controller, sensors and actuators.
The process_controller_soft_cpt communicates feedback about the process to the SCADA
server software (scada_server_soft_cpt), running on the acquisition server, and receives back
instructions from the operator. The acquisition server also hosts an ftp_client that
communicates with the ftp_server running on the http_ftp_server placed in the demilitarized
zone. The http_client application running on the operator workstation communicates with the
http server hosted by the http_ftp_server.

We make the following assumptions regarding the architecture under study:
- physical access to the operator workstation is possible;
- the http_ftp_server is running with user privileges;
- the acquisition server is running with user privileges;
We assume that the following vulnerabilities exist on the architecture and have not been
patched:
- a vulnerability exists on the http_server and results in privilege escalation;
- a vulnerability exists on the ftp_client and results in integrity loss;
- a configuration vulnerability exists on the acquisition server and results in root privilege

acquisition.

In order to analyze this architecture with the S-cube approach, we first input the graphical
model using KB3. The graphical elements corresponding to the different classes defined in the
S-cube KB are used to reproduce the system architecture, depicted in Figure 7. Then before
any processing can take place, the model composed by the S-cube classes and the objects
input graphically is instantiated in a textual model that implicitly defines a Markov chain. A
state of this Markov chain corresponds to a given value for each attribute. The occurrence
rules give the possible transitions going out of any state, and the interaction rules propagate
the effects of a transition on all attributes, thus defining the state reached after this transition.
In the next section, we process the textual model and analyze the results generated.

8.2.2 Qualitative and quantitative risk analysis
To evaluate the described architecture, we consider that the undesirable event is reached as
soon as the attribute actuator_does_not_act_properly of the object actuator takes the value
TRUE. For instance, we can imagine that this architecture is used to control and supervise a
chemical plant and that the process controller is supposed to send an instruction to stop
heating but the instruction is not sent, which can lead to exceeding temperature limits and
result in safety consequences (explosion, human injuries).
We focus in this example on the qualitative behavior described in the various components of
the S-cube KB and make simple hypotheses for the occurrence rates of the events that can
affect the security or safety of the system. The quantitative analysis produces the following
results: after one year of functioning without maintenance (the components are supposed non-
repairable in this example) and without considering detection and prevention measures, the
probability of the actuator not acting properly reaches 0.57. Of course, this seems very high,
but we made the pessimistic assumption that the undesirable event occurs whenever one
actuator in the field network receives a wrong instruction or no instruction from the process
controller. The malfunction of the heater may not be sufficient to create a safety-related risk
and must be combined with malfunctions of other components such as hard-shutdown
mechanisms.

29

The attack and failure scenarios that can lead to this undesirable event are automatically
generated using the FigSeq quantification tool. They are generated based on the rules in the
knowledge base describing attacks, failures and the rates (inverse of mean time to
compromission resp. mean time to failure) of the exponential distribution associated with each
rule (cf. Section 7). These scenarios are sorted in a table according to their deceasing
probabilities of occurrence and hence their contributions to the undesirable event. We grouped
the generated scenarios into minimal cutsets given in Table 4.

Scen. n° Transition name Rate Pr.

1 access(operator_workstation) 1e-4 0.19
exploit_server_vuln_priv_escal
(IT_soft_http_server)

1e-2

exploit_server_vuln_integrity_loss
(IT_soft_client_ftp)

1e-2

privilege_escal.(acquisition_server) 1e-2
send_false_instruct_to_process_controller(scada_server) 0.8

2 access(operator_workstation) 1e-4 0.19
exploit_server_vuln_priv_escal
(http_server)

1e-2

exploit_server_vuln_integrity_loss
(client_ftp)

1e-2

privilege_escal.(acquisition_server) 1e-2
send_no_instruct_to_process_controller(scada_server_s
oft_cpt)

0.7

3 access(field_network) 1e-4 3.5e-2
compromise_communication_link(process_controller) 1e-5
Send_false_instructions_to_actuator(process_controller) 0.7

4 access(field_network) 1e-4 3.5e-2
compromise_communication_link(process_controller) 1e-5
Send_no_instruction_to_actuator(process_controller) 0.7

5 accidental_fail(acquisition_server) 1e-5 3.4e-2
6 accidental_fail(field_network) 1e-5 3.4e-2
7 accidental_fail(process_controller) 1e-5 3.4e-2
8 jamming_attack(field_network) 1e-6 2.9e-3

Table 4: The most probable attack scenarios

Attack scenarios: Scen. n°1 to 4 and 8 are purely malicious as they are composed of only
attack steps.
We can see for example that the first scenario (Scen. n°1 in Table 4), which is the most
probable one, consists of five attack steps: in the first step the attacker succeeds in having
access to the operator workstation (here because the attribute physical access of this machine
was set to true but the attacker can also have remote access). In the second step, the attacker
exploits remotely the existing vulnerability in the http server which results in privilege
escalation. The http server is consequently compromised and the attacker has root privileges
on the http ftp server machine which enables him to compromise also the ftp server running
on it. As the ftp server communicates with an ftp client running on the acquisition server (cf.
Figure 6), the attacker tries in the third step to remotely exploit the vulnerability in the ftp
client. The ftp client is then compromised. Given that the vulnerability leads only to integrity

30

loss the attacker will also need to make a privilege escalation attack, in the fourth step,
exploiting the configuration vulnerability related to the acquisition server in order to be able
to compromise the scada server software. If the attacker succeeds in compromising the latter
then he can, finally, send false instructions to the process controller which will itself send
false instructions to the actuator. The latter will consequently not act properly when required
which leads finally to safety related consequences.
The second attack scenario (Scen. n°2) is the same as the first one except for the last step. For
the latter, instead of falsifying data, the attacker will deny service so that no instructions will
be sent to the process controller which will itself send no instructions to the actuator when
needed.
Scenarios n°3 and 4 consist of three steps: first the attacker accesses the field network, which
is a wireless network with no authentication. Second, he/she compromises the communication
link between the process controller and the actuator (man in the middle attack). Third, and
finally, he/she falsifies or denies the instructions sent by the process controller to the actuator.
The eighth attack scenario (Scen. n°8) is a jamming attack on the wireless field network. This
attack remains with a low probability of occurrence as it requires the attacker to have special
equipment and to be at the vicinity of the network access point.
Accidental scenarios: Scen. n°5 to 7 are purely accidental as they are composed of only
component failures. These scenarios contain just one failure event (called single point of
failure): the failure of the acquisition server, the field network or the process controller will
cause instructions not to be sent to the actuator when needed.
Hybrid scenarios: The structure of this system is too simple to give rise to hybrid scenarios,
where the combination of accidental failures and attacks leads to the undesirable event. This is
due to the absence of redundancy for the PLC or acquisition server. If there were such
redundancies, we could see scenarios where one of these components is lost accidentally and
the other one because of an attack.
We conclude from the results obtained that for the case study architecture given in Figure 6,
the acquisition server and the process controller are the most critical components and their
failure or compromise can lead to safety related consequences. Mitigation measures in this
context would be to deploy redundant components with different technologies in order to
provide the main functionalities to control the process in case of unavailability. This would
also make attack scenarios more difficult to achieve as the attacker would need to find other
vulnerabilities and succeed in exploiting them in order to falsify instructions sent to actuators.

8.2.3 Using S-cube to improve the system architecture
We have modeled in this example attacks that target the corporate networks and then try, by
multi-stage multi-hopping, to reach the industrial network in order to interfere with the
normal operation of the industrial process.
Security enhancement measures recommended by our security experts would be to inhibit any
incoming dataflow towards the process control network. This can be achieved by the
introduction of data diodes that allow data to travel only in one direction. Classic firewalls can
decide about who initiates the connection; but once the communication channel is established,
the data can be exchanged in both directions.
We modified the system architecture in Figure 7 by removing the data flow from the
ftp_server to the ftp_client (unidirectional communication from the ftp_client to the
ftp_server). When the modified architecture with S-cube is processed, the first two attack
scenarios (Scen. n°1 and 2 in Table 4) leading to the undesirable event are no longer possible.
Scenarios n°3 and 4 are still feasible and are the most probable. In order to mitigate these
scenarios, the field network security can be reinforced by deploying a strong authentication

31

mechanism between the different components communicating through this network. This
measure can however be antagonistic with some safety requirements related to time criticality
of the instructions sent to the actuators. Another mitigating measure can be to install wired
connections in field network. This solution is not only more secure but also reinforces the
availability of the data flows carried by the field network. It can however be costly for
installation over a wide geographic range.
We have demonstrated in this case study how the S-cube approach can be used to assess the
risks related to operational system architectures. In particular, the impact of the new
vulnerabilities to which the system may be subject during its exploitation phase can be
assessed. The S-cube can also be used in the design phase to compare the safety and security
of industrial architectures controlled by modern ICS.

9. Conclusions and perspectives

We presented in this paper the main principles of the S-cube approach, related to modeling
notions and the associated qualitative and quantitative aspects, and how they have been
implemented.
S-cube provides a risk analysis framework (tool-based approach) to assess the information
and control architecture of industrial systems. Thanks to a taxonomy and hierarchical
reasoning, we identified the attacks and failure modes these systems are subject to and
associated them with quantitative metrics.
The S-cube approach has been implemented with the help of the Figaro modeling language
and its associated tools. The system architecture is first modeled graphically by the user, and
then processed with the quantification tools. The qualitative analysis provides the scenarios
composed of attack steps and failures that lead to a given undesirable event. The quantitative
analysis allows these scenarios to be sorted by their probabilities, which makes it easier to
exploit the results, and gives an estimation of the undesirable event probability.
By illustrating S-cube on a use case, we showed its ability to model industrial system
architectures and yield the associated risk analysis encompassing safety and security issues.
An illustration of the S-cube approach on a real and complex use case is given in [5].
Future work will focus on refining the quantitative metrics with feedback of experience on
attacks and failures. Detection and reaction to attacks can also be included later in the S-cube
knowledge base.

Acknowledgements
This work was supported by Electricité de France and Centrale Supelec who funded this
research.

References
[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy

of dependable and secure computing,” IEEE Trans. Dependable Secure Comput., vol. 1,
no. 1, pp. 11–33, 2004.

[2] S. Sadvandi, N. Chapon, and L. Pietre-Cambacédes, “Safety and security
interdependencies in complex systems and SoS: Challenges and perspectives,” in
Complex Systems Design & Management, Springer Berlin Heidelberg, 2012, pp. 229–
241.

[3] S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, and Y. Halgand, “A survey of approaches
combining safety and security for industrial control systems,” Reliab. Eng. Syst. Saf.,
vol. 139, pp. 156–178, Jul. 2015.

32

[4] S. Kriaa, M. Bouissou, and Y. Laarouchi, “A Model Based Approach for SCADA Safety
and Security joint Modeling: S-cube,” in IET System Safety and Cyber Security, Bristol,
2015.

[5] S. Kriaa, “Joint safety and security modeling for risk assessment in cyber physical
systems,” phdthesis, Université Paris-Saclay, 2016.

[6] H. Holm, T. Sommestad, M. Ekstedt, and L. Nordstörm, “CySeMoL: A tool for cyber
security analysis of enterprises,” in Electricity Distribution (CIRED 2013), 22nd
International Conference and Exhibition on, 2013, pp. 1–4.

[7] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: A Logic-based Network
Security Analyzer.,” in USENIX security, 2005.

[8] B. Blanchet, “Automatic Verification of Correspondences for Security Protocols,” J. Od
Comput. Secur., vol. 17, no. 4, pp. 363–434, 2009.

[9] M. Bouissou, H. Bouhadana, M. Bannelier, and N. Vilatte, “Knowledge modeling and
reliability processing: presentation of the FIGARO language and of associated tools,” in
proceedings of SAFECOMP 91, Trondheim, Norway, 1991.

[10] T. Prosvirnova, “AltaRica 3.0: a Model-Based approach for Safety Analyses,” phdthesis,
Ecole Polytechnique, 2014.

[11] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The Architecture Analysis & Design
Language (AADL): An Introduction,” CMU/SEI-2006-TN-011, Feb. 2006.

[12] M. Bouissou and J.-L. Bon, “A new formalism that combines advantages of fault-trees
and Markov models: Boolean logic driven Markov processes,” Reliab. Eng. Syst. Saf.,
vol. 82, no. 2, pp. 149–163, Nov. 2003.

[13] M. Bouissou and C. Seguin, “Comparison of the modeling languages AltaRica and
Figaro,” in In proceedings of the 14th congress on reliability and maintenability
(IMDR), Lille, France, 2006.

[14] J. Brunel et al., “Performing Safety Analyses with AADL and AltaRica,” in
International Symposium on Model-Based Safety and Assessment, 2017, pp. 67–81.

[15] J. T. Williams, “A Reference Model For Computer Integrated Manufacturing (CIM) A
Description from the Viewpoint of Industrial Automation,” 1989.

[16] J.-M. Brun, L. Platel, and F. Tea, “Cyber Security of Industrial Control System Why ICS
specificity lead to Cyber Security Challenge?,” in C&ESAR, 2013.

[17] International Electrotechnical Commission, Enterprise Control System Integration --
Part 1: Models and terminology. 2013.

[18] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A UML-Based Modeling
Language for Model-Driven Security,” in ≪UML≫ 2002 — The Unified Modeling
Language, J.-M. Jézéquel, H. Hussmann, and S. Cook, Eds. Springer Berlin Heidelberg,
2002, pp. 426–441.

[19] S. Kriaa, M. Bouissou, F. Colin, Y. Halgand, and L. Pietre-Cambacedes, “Safety and
Security Interactions Modeling Using the BDMP Formalism: Case Study of a Pipeline,”
in Computer Safety, Reliability, and Security, vol. 8666, A. Bondavalli and F. Di
Giandomenico, Eds. Cham: Springer International Publishing, 2014, pp. 326–341.

[20] Ethical Hacking and Countermeasures (CEH v7.1), EC-Council. .
[21] B. Genge, I. Kiss, and P. Haller, “A system dynamics approach for assessing the impact

of cyber attacks on critical infrastructures,” Int. J. Crit. Infrastruct. Prot., vol. 10, pp. 3–
17, Sep. 2015.

[22] S. Hauge, P. Hokstad, S. Håbrekke, and M. A. Lundteigen, “Common cause failures in
safety-instrumented systems: Using field experience from the petroleum industry,”
Reliab. Eng. Syst. Saf., vol. 151, pp. 34–45, Jul. 2016.

33

[23] A. Mosleh, K. N. Fleming, G. W. Parry, H. M. Paula, D. H. Worledge, and D. M.
Rasmuson, “Procedures for Treating Common Cause Failures in Safety and Reliability
Studies,” Electric Power Research Inst., Palo Alto, CA (USA); Pickard, Lowe and
Garrick, Inc., Newport Beach, CA (USA), EPRI-NP-5613-Vol.2, Dec. 1988.

[24] R. Donat and M. Bouissou, “Common Cause Failures in Discrete Dynamic Models:
Theory and Applications in the Figaro Modelling Language,” in In proceedings of the
25th European Safety and Reliability Conference (ESREL), Zürich, 2015.

[25] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to the common
vulnerability scoring system version 2.0,” in Published by FIRST-Forum of Incident
Response and Security Teams, 2007, pp. 1–23.

[26] G. Hatzivasilis, I. Papaefstathiou, and C. Manifavas, “Software Security, Privacy, and
Dependability: Metrics and Measurement,” IEEE Softw., vol. 33, no. 4, pp. 46–54, Jul.
2016.

[27] E. Jonsson and T. Olovsson, “A quantitative model of the security intrusion process
based on attacker behavior,” Softw. Eng. IEEE Trans. On, vol. 23, no. 4, pp. 235–245,
1997.

[28] H. Holm, “A Large-Scale Study of the Time Required to Compromise a Computer
System,” IEEE Trans. Dependable Secure Comput., vol. 11, no. 1, pp. 2–15, Jan. 2014.

[29] M. A. McQueen, W. F. Boyer, M. A. Flynn, and G. A. Beitel, “Time-to-compromise
model for cyber risk reduction estimation,” in Quality of Protection, Springer, 2006, pp.
49–64.

[30] C. Cocozza-Thivent, Processus stochastiques et fiabilité des systèmes. Springer Science
& Business Media, 1997.

[31] “CVE details (The ultimate security vulnerability datasource).” [Online]. Available:
www.cvedetails.com.

[32] M. Bouissou, “Automated dependability analysis of complex systems with the KB3
workbench: the experience of EDF R&D,” in Proceedings of the International
Conference on ENERGY and ENVIRONMENT, CIEM 2005, 2005.

[33] P. G. Harrison, “Laplace Transform Inversion and Passage-Time Distributions in
Markov Processes,” J. Appl. Probab., vol. 27, no. 1, pp. 74–87, 1990.

[34] M. Bouissou, “A simple yet efficient acceleration technique for Monte Carlo
simulation,” in The 22nd annual European Safety and Reliability Conference ESREL,
Amsterdam, 2013.

[35] M. Bouissou and J.-C. Houdebine, “Inconsistency detection in KB3 tools,” in ESREL
2002.

34

Annex: The Figaro language
We give in this annex an excerpt of the Figaro description of the class that models a network
zone, and show some of the key words used. We also explain the mechanisms behind the
processing of the system model.

CLASS network_zone KIND_OF component; (* declaration of a class
modeling a network zone *)
CONSTANT (* declaration of the constants related to the clas s *)
 wireless (* this Boolean is set to true in an object modelin g
a wireless network zone *)
 DOMAIN BOOLEAN
 DEFAULT FALSE;
ATTRIBUTE (* declaration of the attributes related to the cla ss *)
 lambda_auth (* rate of the attack “bypass authentication” *)
 DOMAIN REAL
 DEFAULT 0.01 ;
EFFECT (* effects are Boolean variables reset to FALSE aft er the
occurrence of an event and recalculated by interact ion rules *)
 network_access
 LABEL "attacker has access on network %OBJECT" ;
INTERFACE (* declaration of relations with other classes *)
 connectedElements (* this name will be used in the rules to
designate a set of physical_cpt *)
 KIND physical_cpt
 CARDINAL 1 TO INFINITY
 LABEL "set of components connected to the network_zone" ;
FAILURE (* declaration of the failure modes and attack step s related
to the class *)
 jamming_attack
 LABEL "network jamming attack" ;

OCCURRENCE (* description of the dynamic behavior of the failu re
modes and attack steps *)
 wireless_network_jamming_attack (* name of the rule – used only
for traceability in debug tools *)
 IF wireless
 MAY_OCCUR
 FAULT jamming_attack
 DIST EXP(0.000001);

INTERACTION (* propagation of the instantaneous effects of the
failure modes and attack steps *)
 network_unavailable (* effects of a jamming attack: the output
data of all software executed on all machines conne cted to the
network become unavailable. *)
 IF failure OR jamming_attack OR denial_of_service_attack
 THEN FOR_ALL x A connectedElements
 DO (
 FOR_ALL y A hosted_software(x)
 DO (
 FOR_ALL z A out_data(y) DO unavailable(z)));

35

In Table 5, we detail the meaning of a few keywords used in the Figaro language. The
complete documentation on the language is free and available in two manuals: one is
dedicated to the language syntax and the other to its semantics and use.

Keyword Signification

CLASS Declares a Class
KIND_OF Inheritance relationship with other classes
CONSTANT Declares the constants related to the class
ATTRIBUTE Declares the attributes related to the class. Contrary to constants,

attributes can change value by execution of the occurrence/interaction
rules

EFFECT Declares the effects related to the class. An effect is a Boolean that is
used to propagate the effects of the attack steps and failure modes. The
value of this Boolean is reset to FALSE after each application of a
transition, then updated via the execution of the interaction rules

INTERFACE Declares the interfaces related to the class. An interface describes a
relationship between the class and other classes

FAILURE Declares the failure modes and attack steps related to the class
OCCURRENCE Occurrence rules describe the transitions that may affect the state of a

component of this class, by : their guard (conditions required for a
transition to be applicable), the state changes that they induce and the
associated probability distribution

INTERACTION Interaction rules propagate the deterministic and instantaneous effects
of a transition, among which the effects resulting from the realization
of the attack steps and failure modes

Table 5: Meaning of some keywords of the Figaro language

There are two levels of the Figaro language: order 0 and order 1. The order 1 Figaro,
represented so far, is used to write knowledge bases. Using a variety of keywords including
quantifiers (e.g., IT_EXISTS, FOR_ALL), it is a highly expressive and natural language. The
order 0 Figaro is the language in which the textual model, resulting from the instantiation of
the KB on the graphical model, is generated. This language includes few keywords, which
makes it simple and efficiently executable by machines for further processing.
The formal definition of the Figaro language is given in [35] and allows inconsistencies to be
detected or the consistency of knowledge bases to be ensured as they are built. The S-cube
KB respects a set of rules given in [35] that ensure the consistency of this KB. This implies
that all the models built with the S-cube KB are coherent from their very construction, and
can embed no inconsistencies or undesirable properties. In particular, for any model built
using the S-cube KB the following properties are satisfied:

- The space of states is finite as all the variables defined have a finite domain;
- The model is not totally repairable, as detection and reaction measures have not so far

been modeled. This implies that the space of states includes some states from which
the initial state can no longer be reached;

- Monotonous inference: the EFFECTs are only set to true in the interaction rules.
Given that all effects are initialized to false each time the interaction rules are
executed, this guarantees that whatever the execution order of the interaction rules, the
inference converges towards the same state.

36

The S-cube KB is instantiated on the graphical model of the system architecture, which
generates a textual model in order 0 Figaro. This model implicitly defines a Continuous Time
Markov Chain (CTMC), since all timed transitions of the model are associated with
exponential distributions. Because of the combinatorial explosion of the states, this CTMC
cannot be exhaustively built (in most cases), but it can be explored by the quantification tools,
in order to yield qualitative and quantitative results. Initially, the state of the system is given
by the values of the attributes and constants associated with each object. The interaction rules
are first executed in order to initialize the values of EFFECTs, before the occurrence rules are
executed. If the conditions of an occurrence rule are fulfilled, the risk event (FAILURE) can
occur (instantaneously or after an exponentially distributed time). After the simulation of an
event, which locally changes a few attributes of a given object, the interaction rules are
executed again in order to refresh the effects in the entire model.
In order to yield qualitative and quantitative results, the order 0 Figaro model can be
processed using the Figseq or Yams tools (see § 8.1).

