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Abstract 

 

In this paper, we present a set of equations capitalizing the multiscale modeling of the 

mechanical behavior of Reactor Pressure Vessel (RPV) steels before and after irradiation. 

The equations capture the temperature and strain rate sensitivity in addition to the 

contributions of microstructure features peculiar to RPV steels, such as carbides, initial 

dislocation network and the Hall-Petch grain size sensitivity. Dislocations are assumed to 

move on the {110} and {112} crystallographic planes and a simplified interaction matrix is 

proposed. The predicted yield stress is found in close agreement with a large number of 

experimental results over a large temperature range. Finally, contribution of radiation defects 

is accounted for using atomistic and dislocation dynamics results, revealing the effect of the 

solute cluster size and density on the mechanical behavior. Results are discussed and 

compared with an experimental database on neutron-irradiated RPV steels.    

 

1. Introduction 

Recently, a complete set of constitutive equations has been proposed to predict crystal 

plasticity in pure iron [1]. These equations, forming a so-called Crystalline Law (CL), are 

well-adapted for the prediction of the local behavior of ferrite in macroscopic modeling 

through homogenization techniques (full-field or self-consistent methods).  The reported CL 

[1] accounted for the activation of 12 slip systems on the {110} planes, the Burgers vectors 

being ½ <111>. The significant breakthrough of this CL was the proposal of a thermally 

activated rate equation, based on the analysis of Dislocation Dynamics (DD) results [2,3]. 

Hence, by accounting for the curvature of non-screw dislocations, it was shown that 

hardening induced by local obstacles (such as junctions and precipitates) decreases 

substantially with decreasing temperature. The line tension contribution to strain hardening 

was also found to increase with temperature and with density of local obstacles (dislocation 

network, carbides, etc) and to reach a plateau beyond a given temperature close to 400 K 

defining a so-called athermal regime. The line tension contribution appears only when the 

average length of screw dislocation segments decreases to a minimum critical value. In the 

athermal regime, where dislocation mobility is no longer controlled by lattice friction but by 

jog drag, a simpler CL can be used [4]. Another important contribution of the CL proposed in 

[1] was the proposition for a smooth transition between the two regimes (thermally activated 

vs athermal) through a harmonic superposition of the two rate equations, which assumes that 

the applied stress must provide at the same time enough nucleation rate of kink-pairs 

(controlling the low temperature flow) and sufficient driving force for the jog-dragged 
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dislocations to pass through the local obstacle field. In other terms, the harmonic 

superposition rule is conservative. 

Nevertheless, this CL cannot be applied directly to Reactor Pressure Vessel (RPV) steels, 

because other ingredients must be implemented, owing to the specific features of the bainitic 

microstructure. For more metallurgical details on the bainitic microstructure, readers are 

invited to consult the excellent textbook in ref [5]. The design and fabrication of RPV steels 

have recently been reviewed [6]. These materials experience significant radiation 

embrittlement due to the accumulation of radiation-induced defects of nanometric size. 

Although many phenomenological approaches for predicting radiation hardening were 

reported (see for ex. [7] and [8]), these approaches did not provide a global modeling of 

plastic deformation of irradiated RPV steels. Constitutive equations of the mechanical 

behavior are still missing. This is the main objective of the present paper. 

The next chapter explains how the CL reported in [1] can be simplified and adapted to RPV 

steels, including the introduction of slip activity on the {112} planes and of the grain size 

(Hall-Petch) effect on the flow stress. Chapter 3 presents a multiscale modeling of the 

radiation-induced hardening at the grain scale, accounting for the recent results of Molecular 

Dynamics (MD) and Dislocation Dynamics (DD) simulations. Chapter 4 is dedicated to the 

implementation of the CL in larger scale simulations (self-consistent and full-field methods) 

and to the presentation of simulation results. Finally the results are discussed and compared 

with experimental observations.    

 

2. Simplified crystalline law for irradiated RPV steels 

The objective of the construction of the CL reported in [1] was to reproduce plastic 

deformation in pure iron single crystal in details. The physical basis of the constitutive 

equations was recalled in details in [1]. It is not recalled here. To adapt this CL to RPV steels, 

different steps must be considered. First, when focusing on the behavior of polycrystals, not 

all details are relevant. Second, specific features of bainitic steels must be accounted for, such 

as solid solution and grain size effects. Third, when deforming polycrystals, grains of all 

orientations are involved. In this context, slip activity on the {112} planes cannot be ignored. 

In the following, we present simple methods to take into account these modifications. For the 

sake of simplicity, the set of constitutive equations is introduced with the small strain 

approximation but can be extended straightforwardly to the finite strains framework [9].  

 

2.1. Rate equation       

The plastic slip rate on a reference slip system s is a harmonic sum of the slip rates controlled 

by the jog-drag (noted by the lower index “drag”) and lattice friction (lower index “friction”): 

s

friction

s
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s  

111
 .         (1) 

  

By convention in this paper, upper indexes refer to the slip system number, while lower 

indexes denote the nature of the variable. For the sake of simplicity, the upper indexes may 

be omitted in the text, but not in the equations. The rate equation for the regime controlled by 

jog drag is given by: 
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where o is a constant in the order of 10-5 s-1, app is the resolved shear stress on the reference 

slip system, c the critical stress (defined below). The shear rate in the lattice friction regime 

can be expressed as: 
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where m is the mobile dislocation density (constant in our model), b the norm of Burgers 

vector, H a frequency factor, 
s

scl  is the average length of screw dislocation segments, k the 

Boltzmann constant, T the absolute temperature, Go and o two parameters fitted on 

experimental results. eff is the effective stress, that is, the net driving force for dislocation 

motion. It is given by: 
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The absolute value of the applied stress is considered in order to assign the same sign for the 

applied stress and the shear stress.   

    

2.2. Average obstacle spacing 

As it will be seen in the next section, the computation of the critical stress c requires the 

knowledge of the average length of screw segments lsc, which is a function of the densities of  

local obstacles and their strengths. In the lower bainitic structure, local obstacles are lattice 

dislocations and intragranular carbides [5]. When irradiated, other defects appears in the 

matrix [10], basically Dislocation Loops (DLs) and Solute Clusters (SCs) considered as 

spherical precipitates in our model. According to the dispersed barrier hardening model [11] 

(cited by [12]), interaction statistics between moving dislocations and radiation-induced 

defects are controlled by the planner density of defects. For solute clusters we have SC = 

DSCCSC, and DL = DDLCDL for dislocation loops, where D and C are respectively the diameter 

and concentration of the defect family. Consequently, the total density of local obstacles in 

irradiated RPV steels can be given as: 

DLSCcarbide

sj

j
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obs  
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 ,      (5) 

where 
j

dis  denotes dislocation density on slip system “j”. The sum in eq 14 is to be done 

over all slip systems (see next section). carbides, SC and DL are respectively the planner 

densities of carbides, solute clusters and dislocation loops. To this total obstacle density, one 

may associate an average obstacle strength on system s: 
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with sja  the interaction coefficient between slip systems s and j, determined from DD 

simulations [13,14]. It is important to note here that the interaction coefficients with forest 
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dislocations are note constant. The logarithmic correction [15] is necessary to account for the 

decrease in the dislocation line tension with the dislocation density. The following expression 

is used to update the values of the coefficients [16]:    
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with the reference coefficients aref  computed in DD simulations at the reference density ref = 

1012 m-2 (see Figure 1).  

 

The other interaction coefficients appearing under the square root in eq. 6 are determined 

using multiscale modeling, as will be shown in the next sections. Eq. 6 implies an implicit 

assumption about the superposition rule of strengthening sources. As discussed by Was [17], 

adding hardening contributions is not obvious. It depends on the nature and strength of the 

defects families. However, since all obstacles in eq. 6 are of local type, and since their 

planner density and stress contribution are comparable, the quadratic superposition rule 

seems to be the best choice. This has been demonstrated by DD simulations in the case of 

superposition of forest hardening and carbide strengthening [18]. For more details about this 

issue, readers are invited to consult the discussion reported in [19]. 

In the drag regime, dislocation mobility is isotropic and interaction statistic obeys the two-

dimensional Poisson’s distribution leading to the well-known spacing of 1/√𝜌𝑜𝑏𝑠. However, 

at low temperature, it has been shown [1] that interaction statistics follow the one-

dimensional Poisson’s distribution, parallel to the Burgers vector. DD simulations [3] have 

shown that the low mobility of screw dislocations induces a curvature of non-screw 

dislocations in the order of  
2𝜏𝑒𝑓𝑓

µ𝑏
, which leads to a curvature diameter: 

s

eff

s µb
D


 .          (8)   

The one-dimensional distribution provides an average spacing close to (Dobs)
-1. With 

increasing temperature, the effective stress decreases and D increases, such that (Dobs)
-1 

exceeds the isotropic spacing 1/√𝜌𝑜𝑏𝑠. To make a smooth transition between the two 

statistical distributions, one may consider the average spacing to be given by: 

 

𝜆𝑠−1 = 𝑚𝑖𝑛{√𝜌𝑜𝑏𝑠
𝑠 ; 𝐷𝑠𝜌𝑜𝑏𝑠

𝑠 }        (9) 

 

Once the spacing is obtained, the average length of screw dislocation involved in eq. 3 can be 

given by [1]: 

 c

ssss

sc lDl ;max   ,        (10) 

where lc is the minimum length of a screw dislocation segment, taken equal to 10nm. 

 

2.3. Critical stress 

The critical stress represents the athermal part of the flow stress. It accounts for different 

athermal contributions: the dipolar interaction self (between dislocations belonging to the 

same slip system), the grain size or Hall-Petch (HP) effect HP and the line tension LT. The 

athermal character of the Hall-Petch effect has been evidenced in many experimental 
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observations [20,21]. Recently, Tsuchida et a. [22], have shown that grain size effect is also 

independent of strain rate. These observations indicate that this component must be added 

linearly to the other components of the critical stress. Solid solution hardening must also be 

added linearly as attested in other experimental results [23,24], but it is expected to be much 

lower than the HP component. For the sake of simplicity we keep only one linear component 

accounting for the Hall-Petch effect and the solid solution, called HP. Consequently, the 

critical stress can be expressed as: 

HP

s

LT

s

self

s

c  
22

        (11) 

 

The self-interaction is given by the classical equation: 

 

s
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s

self aµb   ,         (12) 

 

where µ is the shear modulus. The HPcomponent component is obtained by : 

 

grain

HP
d
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µ

)300(
 ,        (13) 

 

where dgrain is the grain size. In most models of the grain size effects, the HP constant K is 

found proportional to the shear modulus. It is thus necessary to account for this dependency 

in our simulations. Since the experimentally determined values of K were mostly determined 

at room temperature, eq. 13 allows using the so-obtained value at any simulation temperature. 

It is known that the HP effect depends on the crystallographic structure and the alloying 

elements in industrial materials [25,26]. For RPV steels, we believe that the appropriate value 

of K is that reported by Tsuchida et al. [22 in the ferritic grains of the Fe-C system.     

Concerning the line tension contribution, the assessment is not trivial. The reason is that 

straight screw dislocations are not always affected by the curvature of non-screw dislocation, 

as revealed in DD simulation [3]. Consequently, as long as screw dislocation segments are of 

finite size, that is lsc  > lc, one can consider that there is no line tension contribution. But at 

high obstacle density and/or high temperature, lsc tends to lc, and if the current curvature of 

non-screw dislocations at the vicinity of obstacles is not high enough to release dislocation 

segments from these obstacles, an increase of flow stress is mandatory to increase this 

curvature, inducing a line tension contribution [1]. After simplification, this contribution can 

be given as: 
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At high temperature where the effective stress becomes negligible and the average obstacle 

spacing 𝜆 equals 1/√𝜌𝑜𝑏𝑠 (see eq. 9), LT recovers its well-known expression: 
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 known as the Taylor equation. 
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2.4. Introducing radiation defects  

Assessment of radiation hardening at the grain scale has received a large attention from the 

scientific community, see for example [17]. Different approaches have been proposed 

ranging from detailed interaction description (see for ex. [27]) to more or less 

phenomenological treatments [28,29]. The common feature of these models is the assumption 

that radiation hardening at the macroscopic scale is proportional to the increase in the critical 

stress due to interaction with radiation. Given the order of magnitude of radiation hardening, 

this assumption may be realistic in irradiated annealed austenitic steels, but can hardly be 

justified in the case of RPV steels [19].         

Typical sizes of radiation defects are within few nanometers, which is quite comparable to 

the size of dislocation cores [30,31]. This confirms that classical elasticity theory is not 

always appropriate to predict the interaction strength or outcome. MD simulations are thus 

needed to track the interaction details and quantitatively characterize the defects resistance at 

the atomic level. In principle, these results can be used to implement appropriate interaction 

rules at larger scale simulations, such as DD simulations. Unfortunately, the majority of MD 

simulations aimed at the rationalization of the obtained results by tracking the details of the 

interaction mechanisms. In other terms, very rare attempts were made to analyze MD results 

at the continuum level, see for example the treatments in [32,33]. In some of these attempts, 

the classical cusp angle concept [34] is used to quantify directly the defects strength (ex. 

[35]) following the Russell-Brown model [36] (ex. [37]). However, as discussed in [38], this 

method is of little help in describing interactions with radiation defects. One may even 

question the relevance of this concept in the case of any defect of finite size. In our model, 

we use alternatively the concept of obstacle shear resistance, that has been used to describe 

interactions with voids [39,40] and other precipitates [38]. It has been shown that 

implementing this resistance as a local rule in DD simulations is straightforward. Applying 

this concept in massive DD simulations of dislocation interactions with spherical precipitates 

allows thus for a multiscale treatment. Monnet [19] presented a general framework for the 

treatment of precipitation hardening and proposed a constitutive equation giving precipitation 

hardening as a function of the precipitate size Dprc, density Cprc and resistance prc. If SCs are 

considered as coherent precipitates (which has been recently confirmed in experiment by Shu 

et al. by [41] and in numerical simulations by Pascuet et al. [42]), application of the 

constitutive equation in the case of SCs gives: 

 
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 ,       (16) 

with SC, DSC, LSC (not to be confused with the average length of screw dislocation segments  

lsc in eq 10) are respectively the shear resistance, size and average free planner spacing of 

SCs. DSC is the harmonic mean of DSC and LSC, which equals (DSC LSC,)/(DSC + LSC).  is the 

maximum resistance of 4.5 GPa beyond which hardening saturates because dislocations 

cannot penetrate obstacles (Orowan mechanism). For pure Cu or Cr coherent precipitate in 

iron, the resistance is close to 2.3 GPa [38]. But recent MD simulations [42] have shown that 

SC is rather close to 2.8 GPa. In the rigorous treatment, LSC is equal to [(DSCCSC)-0.5 - DSC], 

but since the average spacing is significantly larger than the size, LSC reduces to (DSCCSC)-0.5, 

which explains the presence of the square root in eq. 16. Comparing eq. 16 with the classical 

form of hardening, SCSCSC aµb   , it is easy to identify an appropriate value of the 

interaction coefficient aSC, appearing in eq. 6. It is also easy to check that for low to 
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intermediate radiation damage CSC is in the order of few 1023 m-3, with a volume fraction 

below 0.005,  aSC does not vary much and remains approximately close to 0.04.  

Concerning hardening induced by dislocation loops, two tendencies can be isolated 

depending on loop size DDL [43]. Interaction with large loops is similar to dislocation-

dislocation interactions (shearing, junction annihilation, etc.). This population’s contribution 

is thus similar to the forest contribution. However, loops of size less than 4 nm are absorbed 

by the edge character, leaving a super-jog, while a helical turn is formed on screw 

dislocations inducing a high pinning force. Massive DD simulations were performed to 

compute hardening due to the absorption mechanism [44]. It was shown that for dislocation 

loops of 2 – 4 nm size and of density up to 1023 m-3, a simple Taylor-type equation 

reproduces all DD simulation results within a good accuracy:         

 

DLDL

s

DL CDµb5.0          (17) 

 

Again, comparing eq. 17 with DLDL

s

DL aµb   , it is possible to identify a value of aDL = 

0.25 that can be used in eq.6.  The contribution of DLs to hardening was recently reviewed in 

[19] and it was shown that the induced hardening as revealed by DD simulations is quite 

similar to that induced by network dislocations, using the same scaling parameters (average 

distance between dislocation lines) and interaction strength. 

2.5. Implementation of slip activity on {112} planes  

In the initial CL [1], slip was constrained on {110} planes, generating 12 slip systems. 

However, many experimental results (see for ex. [45]) evidenced the activity of other slip 

planes, at least the {112} planes. This missing feature did not affect results in [1] because the 

simulated behavior concerned only orientations in the center of the standard stereographic 

triangle, implying a primary and a secondary slip plane of {110} type [46].  

But activity on the {112} planes may play an important role in the deformation of 

polycrystals such as RPV steels, because increasing the number of slip systems induces a 

decrease in the Taylor factor [47]. In the following we present the method used to implement 

this feature in the CL.   

The activation energy in eq. 3 has been fitted on experimental data of slip activity on the 

{110} planes. This is the easy part because {110} planes are the principal slip planes in BCC 

metals [48,49].  Much less experimental data are available on the activation parameters for 

slip on the {112} planes. Spitzig and Keh [50,51] measured the flow stress as a function of 

the tensile axis orientation. At all test temperatures, the CRSS of Fe single crystals can be 

sorted as 110 < 112-TW < 110-AT, where 110, 112-TW and 110-AT are the CRSS on the {110}, 

{112} in the twining direction and {112} (in the anti-twining direction) respectively. They 

have also shown that the CRSSs on the different planes scale with different values of the 

parameter o in eq. 3. In this paper, we adopt the same strategy in accounting for the activity 

on the {112} planes. We thus consider the same value of Go and different values for o:  360 

MPa (for the {110} planes), 410 MPa (for the {112} planes in the twinning direction) and 

480 MPa (for the {112} planes in the anti-twining direction). 

Another important feature must be highlighted. The interaction coefficients between the 

{110} and {112} planes must account for the relaxation induced by the cross slip of screw 

dislocations between the two plane families. This relaxation is not considered in the classical 

representation of interaction coefficients. In fact, since during cross slip the two activated slip 

systems share the same Burgers vector, the resulting interaction is considered to be of 
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collinear type, that is, the strongest interaction. Consequently, instead of considering the 

collinear interaction coefficient (which amounts to acol = 0.7), we propose to use a new 

coefficient, called the Cross-slip coefficient (acs) with a strength equal to that of the self-

interaction (asc = aself  = 0.1). The total interaction matrix with the reference values of the 

different interaction coefficients (in the inset table) are given in Figure 1. 

 

 

Figure 1: Interaction matrix of slip systems on the {110} and {112} planes with the reference values. 

For the sake of simplicity, only two values of the coefficients are used: 0.7 for the collinear 

interaction and 0.1 for all the others. In our model we do not distinguish the cross-slip 

between the {110} planes and the {112} in the twinning direction from that in the 

antitwinning direction. 

2.6. Evolution of defects densities  

A classical Kocks-Mecking formulation [52] is used to predict the evolution of dislocation 

densities as a function of plastic glide: 
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where  represents the so-called dislocation mean free path, namely the average 

displacement of mobile dislocations before immobilization, and y a distance below which 

dislocation annihilation is systematic. As explained in [1], Temperature dependent interaction 

statistics affect  and y, which can be accounted for by the following expressions: 
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B4 a_self a_col a_junc a_junc a_junc a_junc a_copla a_junc a_junc a_junc a_junc a_col a_cs a_cs a_junc a_junc a_junc a_junc a_junc a_junc

B5 a_self a_junc a_junc a_copla a_junc a_junc a_junc a_junc a_junc a_junc a_cs a_cs a_col a_junc a_junc a_junc a_junc a_junc a_junc

C1 a_self a_col a_col a_copla a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_cs a_cs a_col a_junc a_junc a_junc

C3 a_self a_col a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_col a_cs a_cs a_junc a_junc a_junc

C5 a_self a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_cs a_col a_cs a_junc a_junc a_junc

D1 a_self a_col a_col a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_cs a_col a_cs

D4 a_self a_col a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_cs a_cs a_col

D6 a_self a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_col a_cs a_cs

A6' a_self a_col a_col a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc

A2" a_self a_col a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc

A3' a_self a_col a_junc a_cs a_copla a_self a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc a_junc

B4" 0.1 0.7 0.1 0.1 0.1 a_self a_col a_col a_junc a_junc a_junc a_junc a_junc a_junc

B2' a_self a_col a_junc a_junc a_junc a_junc a_junc a_junc

B5" a_self a_junc a_junc a_junc a_junc a_junc a_junc

C3" a_self a_col a_col a_junc a_junc a_junc

C5' a_self a_col a_junc a_junc a_junc

C1" a_self a_junc a_junc a_junc

D6' a_self a_col a_col

D1" a_self a_col

D4' a_self
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µbyy

s

eff

s

drag

s

211
 .         (20)     

 

Where Kself (Kobs) are constants representing the number of intersections with primary 

dislocations (local obstacles) before immobilization. They correspond to the permeability of 

primary dislocations (obstacles) to dislocation crossing and ydrag is the annihilation distance 

that prevails at high temperature in the drag regime.  

Since radiation defects are usually sheared, one must also account for the evolution of the 

local density of these defects.  Consider interactions with DLs of size DDL. Let V be a small 

volume subjected to a shear increment dγ. The latter must equal bdS/V, where dS is the area 

swept by dislocations. If we consider that a moving dislocation can drag or absorbe all loops 

contained in a layer of thickness (DLDDL), centered on the dislocation slip plane, then the 

decrease in the loop density on system s within the volume V is simply dCDL = -

DDLdSCDL/V. Combining dγ and dCDL and dividing by the time increment, one gets : 

    

ss

DL

s

DL
DL

s

DL C
b

D
C    .        (21) 

The parameter  accounts for the efficiency of the dislocation in dragging the loops. By 

definition, when  , only loops cutting the slip plane are absorbed. 

A similar reasoning can be applied to SCs. The softening here results from shearing rather 

than dragging or absorption. We may write: 

              

ss

SC

s

SC

SC

s

SC C
b

D
C    .        (22) 

Of course, in the case of SCs, there is no reason that SC can be larger than one. On the 

contrary, we expect the SCs to be completely sheared after the passage of n = DSC/b 

dislocations. In other terms, a plausible value for this parameter would be SC = 1/n =  b /DSC, 

which allows to simplify eq. 22 to : 

 
ss

SC

s

SC CC   .         (23) 

 

However, this equation questions the relevance of the cross graining (scale transition) 

procedure used here, that is, the transition from the dislocation discrete space to the 

continuum space of larger scale simulations such as finite-element method.         

3. Simulation of the macroscopic behavior   

3.1. Simulation methods 

In this work, three simulation techniques for the integration of the crystalline law have been 

used: the classical self-consistent homogenization scheme with the Berveiller-Zaoui 

localization rule [53], called in the following the BZ method, and two full field simulation 

techniques: the Finite Element (FE) method using the code CAST3M [54] and the FFT based 

solver AMITEX-FFTP [55], called FFT method. The BZ method was used in all the 

applications below, while the FE method was used for the tensile simulations of single 

crystals and the FFT method for the simulations of tensile tests of RPV steels. 
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FFT-based simulations have been performed on Voronoï cubic grain aggregates, with various 

spatial resolutions and various number of grain orientations (taken from a random isotropic 

crystallographic texture). Finally, the converged average behavior of the Voronoï polycrystal 

obtained with 1000 orientations and a spatial resolution of 7x7x7 voxels per grain was found 

to be satisfactorily reproduced with a much simpler cubic grain aggregate, with 125 grains 

and one voxel per grain, leading to drastically reduced computation times, comparable to the 

BZ model. 

Note also that, in the following, the BZ and FE simulations use the small strain 

approximation whereas FFT simulations use the complete finite strains framework.      

In all simulations, the values of the constants and the material parameters are listed in Table 

1. Of course, the parameter values depend on the tested materials.    

 

 

Parameter  Value  Parameter  value 

o (rate constant) 10-5 s-1  n (rate power) 100 

Go 0.84 eV  o  ({110}) 360 MPa 

H 2 1011 s-1  o  ({112} TW) 410 MPa 

b (Burgers vector) 0.248 nm  o  ({110} AT) 480 MPa 

E (Young modulus) in GPa 236 – 0.0459 T  k (Boltzmann constant) 8.6 10-5 eVK-1 

aij (non collinear) 0.1   (Poisson’s ratio)  0.35 

ydrag  (dist. annihi.) 2 nm  aij (collinear) 0.7 

s
ini=s

m (primary system) 

singlecrystal simulation  

1012 m-2  s
ini=s

m (other systems)  

singlecrystal simulations 

10112 m-2 

s
ini=s

mFe polycrystal 1011 m-2  s
ini=s

m RPV 1013 m-2 

Kself  17  Kforest   Kself /3 

Ccarbide (RPV) 7.6×1017 m-3  lc (minimal length)  10 nm 

dgrain (RPV) 6.9 µm  SC 0 

Dcarbide (RPV) 80 nm  DL 0 

Table 1: Values of the model parameters and material constants used for the simulations 

 

 

3.2. Validation of the implementation of {112} planes 

FEM simulations of tensile test of single crystal beam of [1̅49] has been reported in [1]. This 

orientation is close to the center of the standard stereographic triangle (orientation D in the 

inset of Figure 2a), and activates slip on the (1̅01) plane. Using exactly the same simulation 

conditions and sample geometry, we simulate using the FE method tensile tests of beams 

orientations [1̅18] (close to orientation A) and [2̅88] (close to orientation B), activating, 

respectively, slip on the (11̅2) planes in the twinning direction and on the (2̅11) plane in the 

antitwining direction. In these simulations of pure Fe single crystals, we set SC = DL = 

carbide = 0, with a high enough value of grain size dgrain to suppress the Hall-Petch effect.     
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Figure 2: evolution of the critical resolved shear stress with temperature for three orientations, (a) experimental 

results from [50] and (b) predicted values in FEM simulations.  

The comparison between the measured and computed values of the CRSS as a function of 

temperature and single crystal orientation is shown in Figure 2a and b. At each simulation 

temperature, the CRSS on the (1̅01) plane is lower than that on the (11̅2) plane, which is also 

lower than that on the (2̅11) plane. The obtained sorting and ratios between the different 

CRSS is in agreement with experimental observations [50,51]. This indicates that the 

implementation of slip activity on the {112} planes meets the rare requirements reported in 

the literature. 

3.3. Behavior of pure iron polycrystals 

The second set of simulations was obtained using the BZ method on pure Fe polycrystals. 

Materials parameters are the same as above, apart from dislocation densities on the different 

slip systems. They were taken such that the total dislocation density is close to 1013 m-2.  

Since the conventional offset of 0.2% strain is usually affected by static aging in iron, we use 

stress at 2% offset of deformation to compare with experiment [56]. The evolution of the 

yield stress predicted by the BZ method is depicted in Figure 3.   
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Figure 3: comparison of the yield stress at 2% strain measured  in experiment and predicted by the BZ 

homogenization technique, using all slip planes ({110} and {112}) and only {110} planes.   

 

As can be noticed from the figure, there is a good agreement with experiment in the whole 

temperature range. The surprising feature is that the implementation of the {112} planes with 

different activation scheme does not alter strongly the predicted yield stress. Passing from 12 

to 24 slip systems does not seem to soften the mechanical behavior. 

 

3.4. Simulated behavior of the RPV steel 

In this Section we target RPV steels with metallurgical characteristics close to those of the 

SA508 class specifications. For these steels, it is important to account for the intra-lath 

carbide density and the high dislocation density in both the un-irradiated and irradiated states. 

To do so, it is important to select a reference material that has been characterized using 

experimental tests. This material is called Euromaterial A and has been characterized in the 

PERFECT project [57] by Vincent et al in [58] and others [59,60]. The values of the 

constants found for this material can be consulted in Table 1. 

The comparison between the experimental and simulated tensile curves can be seen in Figure 

4. The comparison is made at three different values of temperature. The materials parameters, 

that is, the dislocation density, the mean free paths and the grain size are the same. It can be 

seen that without adjusting the crystalline law at every temperature, the predicted tensile 

curves are close to the experimental ones, which highlights the predictive power of the CL.        
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Figure 4: simulated (BZ method) vs experimental tensile curves of the RPV material Euromateriala A at three 

different temperatures.  

However, at the onset of plastic deformation, the predicted curves are smooth and do not fit 

correctly the experimental curves. This feature is due to the moderate static aging, known to 

prevail in most of Fe-C alloys and steels [61]. The constitutive description of static aging is 

still a difficult task and, to the knowledge of the authors, has not been addressed deeply in the 

literature.      

The self-consistent scheme adopted here [53] is known to be well adapted for elasto-plastic 

behavior. However, the BZ homogenization model is also well known to provide estimates 

that are too stiff (even violating bounds in some specific cases) [62,63].  Hence, it is 

interesting to compare the BZ self-consistent results with the ones of a full field FFT method. 

The two sets of simulated tensile curves are depicted in Figure 5, considering for both 

implementations a small strain formulation framework. It can be seen that, at the 0.2% plastic 

strain offset, the difference between predictions is negligible for the all tested temperatures.  
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Figure 5: comparison between the tensile curves predicted by the BZ (self-consistent) and FFT (full field) 

methods at different temperature.  

 

At larger strains, the BZ method is too stiff, as expected, and predicts significantly higher 

tensile stresses. The deviation seems to increase monotonously with the flow stress and 

plastic deformation. However the shift remains in the order of 5% at the offset of 2% of 

plastic strain. At low strain, The FFT and BZ methods provide thus consistent predictions of 

the flow stress, and the BZ method is used in the following for that purpose. 

This result encourages us to check for the effect of solute cluster on the flow stress and 

internal variables of the model.  

We consider the typical values of density and size of solute clusters (using APT 

characterization) of moderately irradiated low copper RPV steels recalled in Table 1. For the 

as-received (AR) materials (non-irradiated), the simulation predictions are compared with 

results obtained by Renevey [64], Libert [65] and Euromateriala A [58]. Radiation hardening 

has been measured on the Euromateriala A [58] materials. The comparison is shown in 

Figure 7 for all the reported results. 
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Figure 6: comparison between the BZ predictions (full symbols) and experimental values (open symbols) of the 

flow stress at.2% offset strain in RPV steels before (in bleu) and after (in red) irradiation as a function of the 

simulation/experimental temperature of the tensile tests.   

Since RPV experience static aging, especially at low temperature, we consider the flow stress 

at the offset strain of 2%. Two important remarks can be made: (i) there is a fare agreement 

between experimental and simulation results in the AR and irradiated cases, obtained with no 

adjustable parameters and (ii) radiation hardening seems to vanish at low temperatures. 

Contrary to the popular belief, radiation hardening does depend on temperature. At the first 

glance, this appears to be in contradiction with experimental results (see for ex. [66,67]). Our 

interpretation of this discrepancy is that the offset of 0.2% for the measurement of the yield 

stress is not the most appropriate. This is due to static aging strongly accentuated by 

irradiation. The Lüders plateau increases with decreasing temperature and increasing 

radiation dose, as can be seen on Figure 4. However, according to our model, at very low 

temperature, the flow stress of RPV at strains larger than, say 2%, must not be strongly 

affected by irradiation. We could not confirm this important result because we could not find 

available tensile curves on irradiated RPV in the literature. On the other hand, Figure 6 shows 

that radiation hardening is little sensitive to temperature above 300 K. The small decrease in 

irradiation hardening is due to the classical elastic softening. This athermal high-temperature 

irradiation hardening has been discussed in details in recent papers [4,19], in which radiation 

hardening is predicted and compared with experimental results in RPV, Fe-Cr ferritic-

martensitic and austenitic stainless steels.          

One of the most important parameter in our model is the evolution of the average length of 

screw dislocation segments lsc. This variable delineates the domain of appearance of the line 

tension contribution. When, lsc decreases to its minimal value lc = 10 nm, the line tension 

contribution is no longer zero, because the fraction term in the min expression involving   in 

eq. 14 becomes larger than the effective stress.   
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Figure 7: evolution of the average length of screw segments as a function of strain and BZ simulation 

temperature with (Ir for irradtaed) and without (AR for as-received unirradiated) solute clusters defects.  

In order to track the evolution of lsc in the simulations of RPV (AR and irradiated) we choose 

to record the value of lsc associated with the most active slip system in the best oriented grain, 

that is, with the highest Schmid factor. This evolution is given in Figure 7 as a function of 

strain for different simulation temperatures in the irradiated (with solute clusters) and 

unirradiated case. For all profiles at larger simulation temperatures than the one plotted in the 

figure, lsc reaches its minimal value at the beginning of deformation. lsc is found to decease as 

expected with deformation because of the increase in the obstacle density, which in this case 

corresponds to the stored dislocations. At low temperature, lsc is large because the effective 

stress is large, which increases the curvature and the average obstacle spacing. When SCs are 

added as a new component of the microstructure, the same behavior is found but lsc is lower 

in irradiated materials because of the increase in the obstacle density. Consequently, the line 

tension contribution increases with the density of radiation defects. This is the origin of 

radiation hardening, which explains the insensitivity of hardening to temperature for T > 300 

K. Another interesting feature is that lsc in the irradiated material becomes larger than that in 

the unirradiated materials for uniaxial strain larger than 8 %, as can be noticed in Figure 7. 

This is a tricky property and can be explained as follows. The increase in the critical stress 

due to the presence of solute clusters delays the activation of secondary slip. Since Kcopla is 

substantially higher than Kforst, (see Table 1), the mean free path of primary dislocations (s 

in eq. 19) decreases less with strain, which slows down dislocation storage (eq. 18) and, 

consequently, slows down the decrease in lsc. Although in the irradiated material, the starting 

value of lsc is lower than in the unirradiated material, at enough strain, lsc in the irradiated 

material exceeds that in the unirradiated one.        

In order to give an insight into the different contributions of the microstructure components 

to the flow stress, we show in Figure 8 the evolution of every contribution as a function of 

temperature in the unirradiated (a) and irradiated (b) RPV steels.   
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Figure 8: contributions of the microstructure components in un-irradiated (a) and irradiated (b) RPV steels as a 

function of temperature.    

 

From the figure, several remarks can be made: (i) the grain size contribution (Hall-Petch 

effect) at high temperature amounts to more than one third of the applied stress, which 

confirms that the grain size effect cannot be neglected in bainitic microstructure. (ii) The 

effective stress depends strongly on temperature but little on radiation defects. (iii) The line 

tension contribution vanishes for temperatures less than 200 K (100 K) in the unirradiated 

(irradiated case). (iv) The intermediate temperature regime can be characterized from the 

figure in the temperature range where both the line tension and effective stress contributions 

are significant.(v) At room temperature, the behavior is not completely athermal. (vi) 

Irradiation hardening at high temperature is athermal and basically due to the increase in the 

line tension contribution.           

4. Conclusions 

In this paper, we present physically based constitutive equations (crystalline law) designed 

for polycrystalline iron and RPV steels that accounts for the thermally activated (below 250 

K) and athermal (above 350 K) regimes, with a smooth transition in the intermediate 

temperature range. The flow stress is expressed in terms of the microstructural components: 

dislocation network, carbides, grain size and, in the case of irradiated RPV, solute clusters. 

This law has been integrated using the self-consistent method (using the Berveiller-Zaoui 

localization rule) and the full field methods: the FFT (AMITEX) and Finite-Elements 

(CASTEM) solvers. From the results reported in this paper, we can draw the following 

conclusions: 

- The BZ homogenization model provides satisfying results at the onset of plastic 

deformation but when the applied strain increases it overestimates significantly the 

macroscopic response with respect to the FFT-based full field predictions, 
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- For the behavior of polycrystals, it is not necessary to account for the intragranular 

behavior in full details. The proposed simplified law is found to reproduce 

appropriately the macroscopic behavior of polycrystals, 

- The implementation of the {112} slip planes does not seem to strongly affect the yield 

stress. No softening is obtained when passing from 12 to 24 slip systems. 

- The large initial dislocation and carbide densities in RPV steels decreases strongly the 

average length of screw dislocation segments, which in turn increases the effective 

stress with respect to a fully annealed polycrystalline iron. 

- Radiation defects accentuate the decrease in the screw segment length and generate a 

line tension contribution at lower temperatures.  

- The Hall-Petch effect (grain size effect) contributes strongly to the yield stress in RPV 

steels. It amounts to more than 35%. This component must not be neglected in 

modeling plastic deformation of microstructures such as bainite and martensite.  

- Radiation hardening computed at 2% offset of plastic strain seems to decrease with 

decreasing temperature in the thermally activated regime and vanishes below 100 K. 

For temperatures higher than 250 K, hardening becomes athermal. This important 

feature deserves further investigation for validation at very low temperature..   
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