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ABSTRACT

The key role of hydrological variability in struciog brown trout populations is well-
established. However, the influence of addition@vets is more difficult to identify. The
implementation of long-term monitoring and the depenent of reliable tools can help reveal
fine local drivers structuring fish populationsdaontrasted flow regimes. The present study
used data series for nine reaches monitored fertoimineteen years in four French salmonid
streams. Study reaches were within five bypassetioss influenced by instream flow. A
deterministic trout population dynamics model wapled on each reach, with calibration
and validation procedures. Results revealed thalbdical drivers structured all reaches
similarly. In addition, seven other drivers werentified. Among these additional drivers,
hydrology mainly explained temporal fluctuationgiaut density, regardless of reach. Three
drivers independent of hydrology were also reveatexbr water quality, limited spawning
area, and the effect of power plant operations.déiNers influenced the whole bypassed
section and were never limited to the scale ofrdaeh (sampling area). Further analyses of
each driver are now needed, to regionalize and tdyaheir respective impact precisely.
Research perspectives include developing a toolddra be used at any location, integrating
temporal variability and most of the controllingivairs for each population type. Thus,
assessment of trout population status would be Igiety enabling implementation of

efficient management rules.

KEY-WORDS : Trout, population dynamics, structuring drivdrgpassed section
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Main drivers of trout population dynamics

INTRODUCTION

Freshwater ecosystems provide vital natural ressufe.g., clean water and food) and
services (e.g., energy, irrigation, waste assimitgtrecreation) that contribute to human well-
being (Vorosmarty et al. 2010). However, such humaa of freshwater ecosystems has
resulted in declining biodiversity worldwide (Dudge et al. 2006). Balmfort et al. (2002)
estimated that freshwater vertebrates declined anhaual rate of 2.4% over the period 1970—
1999. In the last few decades, 20% of describezhfvater fish species worldwide have been
listed as threatened, endangered or extinct (Maguet al. 2010). Among fish species, brown
trout (Salmo truttal.) is subject to specific human impact becausatofeconomic and
cultural importance. In France, in addition to gnpsessures, a large majority of hydroelectric
schemes (80%) are located on salmonid streams,ewtbremwn trout is the dominant fish
species. Moreover, studies of reference streanealed a significant decrease in brown trout
distribution area and abundance in recent yearsléPet al. 2011). Multiple causes were
mentioned: habitat degradation, proliferative kindisease, angling catch, and water
temperature. Predicted trends for salmonid distiibuarea under global warming suggest
that trout range will decrease in the future (Coettal. 2013).
In this context, scientists need to develop knogdednd tools to facilitate operational
decisions for ecological and sustainable water mamant. Above all, precise knowledge of
the driving factors influencing fish population dymics is required. It is clear that multiple
drivers operating on different space and time scaleucture fish population dynamics
(Durance et al. 2006; Jackson et al. 2001; Vincehal. 2012). Trout biology and ecology
have been studied for many years and are nowvelativell-documented compared to other
fish species (Bagliniere & Maisse 1991; Elliott 299onsson et al. 2001; Klemetsen et al.
2003). However, few studies have qualified thea$ef the various drivers involved in trout
population dynamics. It is well-established thatfofogical events during fry, intra-gravel
and post-emergence periods are major drivers aft trecruitment (Cattanéo et al. 2002;
Gouraud et al. 2008; Jensen & Johnsen 1999; LolmmidC2004). In addition, recruitment
has often been shown to be the main driver of paijoum size (Lobon-Cervia 2009; Milner et
al. 2003). Thus, by limiting recruitment, dischaigeoften one of the main drivers of trout
population dynamics in mountain streams. Beyondrdigdy, however, multiple drivers,
abiotic or biotic, can structure trout populatiofMilner et al. 2003). The most commonly
cited abiotic factors are temperature (Armstrongle2010; Armstrong et al. 2013; Warren et
2
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al. 2012) and water chemistry (EkIov et al. 1998)ile competition for resources seems to be
the major biotic determinant of trout populatiorar@petition is linked to several biotic (such
as food availability, Grant et al. 1998) or abidadigvers (such as carrying capacity, Lobdn-
Cervid 2008) and can induce density-dependenttsffat growth or survival (Elliott 1994).
The various drivers structuring trout populatioqpe@te on different space and time scales.
Small-scale studies have highlighted the effectpretise biotic drivers (Einum et al. 2011,
Jenkins et al. 1999; Lobon-Cervia 2008), and abitdctors such as flow regime (Lobon-
Cervid 2004; Vgllestad & Olsen 2008) and tempeeat(Borgstram & Museth 2005).
However, most studies focused on the details aiglessite, making large-scale extrapolation
hazardous (Jackson et al. 2001). The present shedgfore adopted a local scale analysis of
trout population dynamics in nine different reagheesd summarized the spatial and temporal
incidence of drivers identified at local level s® ta assess the generalizability of the local
results.

The study focused on nine reaches, located inbiyassed sections of hydroelectric dams in
four geographically remote trout-bearing mountdimeans. All the bypassed sections were
under minimum flow, and had been previously studeéedssess minimum flow value effects
on trout population dynamics compared with refeeesites (Gouraud et al. 2001; Gouraud et
al. 2008). Local trout population dynamics moded#jbrated on five of the nine reaches (in
the Beyrede, Pont-Haut and Rory bypassed sectimesg, previously published (Gouraud et
al. 2001; Gouraud et al. 2008). Long-term moniwilbetween nine and nineteen years) then
allowed accurate analysis of the temporal dynamafcthe nine trout populations (Waters
1999). The study objective was to provide an updatethese trout population dynamics
analyses so as to identify the spatial and tempocidience of each population driver. A
deterministic population dynamics model was theibicded for each reach, with local trout
population features. Certain trout population dyicardrivers were implemented in the initial
model and subsequently calibrated for each populatbiological characteristics, carrying
capacity, food availability, etc.). In additionnip term monitoring identified further abiotic
drivers which only occasionally influenced troutppdation, which were then added to the

initial model.

MATERIAL AND METHOD

Trout population dynamics model
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General mode

The study used the MODYPOP deterministic trout patman dynamics model described by

Gouraud et al. (2001). This model, based on thdieLesatrix, simulates change in a trout

population (i.e., density and biomass of differdavelopment stages: 0+, 1+ and >1+) over
time by 1-month time steps. Two mechanisms of @t regulation as a function of habitat

are integrated: (1) density-dependent mortalityicwiiends to push the population toward a
size compatible with local carrying capacity, a2) &djustment of adult biomass to local

carrying capacity.

Trout population dynamics drivers

Several inputs were required for MODYPOP calibratifil) biological parameters (survival,

fecundity, growth rates, female fertility, sex cathumber of development stages and initial
density and biomass for each stage) and (2) enwiemial drivers (carrying capacity, food

availability, and time series of daily dischargel aaily temperature). Environmental drivers
contribute to model growth rate and density-depeh@ffects. These required MODYPOP

inputs were calibrated for each reach, either byitoang or by knowledge taken from the

literature (detailed in Gouraud et al. (2001).

Four non-required drivers (abiotic drivers whichynmaccasionally influence trout population

and which were tested in the study) were addeth¢dMODYPOP model as reach-specific
drivers. The four reach-specific drivers were: flow (Cattanéo 2005), limited available

spawning area, power plant operations (Gouraud 2088), and water quality. These drivers
were calibrated using the same approach.

Model calibration for reach-specific drivers

MODYPOP was calibrated for each reach and eachl@j@vent stage, adding reach-specific
drivers one by one, using the same iterative caialé approach:

(1) Identification of one reach-specific driver: modsinulations were compared with
observations to identify whether a reach-specifived could explain the residual
error for a development stage. We focused atdinsihe development stage associated
with the highest residual error, then chose anainreach-specific driver that best
explained deviations in terms of magnitude, digattand frequency.

(2) Calibration: the effect of identified reach-spexifirivers was calibrated by tuning

mortality rates (testing several rates, by 5% stepssistent with the accuracy of our
4
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data and deterministic approach), while other patars of the population dynamics
model remained constant. For hydrological driversnimum duration and flood
threshold were also tuned: the population was emfeed when daily flow exceeded
threshold for a sufficient number of days. Valussaxiated with the minimum
deviation between observation and simulation fa teach (all development stages
and all years) were retained for analysis.

(3) Returning to step 1, another driver was identifiegth the same approach. The

process stopped when remaining drivers no longela@ed any residual deviation.

Model validation

MODYPOP validation was based on tests of the sSgamice of each reach model, for each
development stage. The Monte-Carlo randomizatishwas used with 10,000 permutations
of observed density (Crowley 1992). The aim wagesh whether random assignment of data
would be as closely associated with the model'digiiens as the original data. The ability of

the model to capture temporal variations was vedidor a given reach if less than 5% of

random permutations were associated with (1) ardasuen of squared deviations and (2) a
better prediction of the direction of density fluations from one year to another.

Data set

Bypassed sections and reaches

The study focused on five bypassed sections whenerbtrout Salmo truttal.) was the
dominant fish species. They were located in fouuntain watersheds, geographically remote
from one another except for Fontan and Breil whigdre at about 10 kilometers' distance
(respectively, upstream and downstream bypasséosein the same Mediterranean stream
(Fig. 1). The physical characteristics of the bygeassections differed greatly, with annual
mean flow ranging between 2.7 and 20.9% altitude between 280 and 740 m and slope
between 0.7% and 3.7% (Table 129287). All congttuittle reservoirs upstream of a dam
without retention capacity, with high natural fleates occurring by overtopping.

One to three reaches were selected within eachsisgpasection as being representative of the
mesohabitat assemblage of the whole section (T2pbl&hen more than one reach was
chosen in a given bypassed section, these reabbe®d significantly different mesohabitat
assemblage. We chose to study the population dysaatireach scale so as to be able to
detect whether driver effects depended on the nadsiath assemblage.
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Conducting local modeling in nine reaches, somevieith being located within the same
bypassed section, provided an opportunity to ingatt the generalizability of the local
approaches: local results were summarized by ctesizing the spatial and temporal
incidence of the identified drivers.

Monitoring and estimation of model drivers

The study period was from 1990 to 2013. During tasiod, each reach was monitored in
terms of trout population, habitat, water qualitydainter-annual variables (discharge,
temperature and streambed substrate favorableatenspg).

Each reach was sampled annually by wading, using-pass removal electrofishing
sampling, following the recommendations of the Ppeen Committee for Standardization
(CEN 2003). Sampling was performed without blockirays, in summer or early autumn. All
fish caught were identified, measured (total lehgiamd weighed. Histogram analysis
determined size according to development stage 16+,>1+). Trout abundance for each
stage and for each sample were estimated with #nle @nd Strub (1978) method. Densities
(estimated abundance per sampled reach lengthmmdiasses (total weight per sampled
reach length) were obtained for each developmegesand each sample. Mean density and
standard deviation were calculated for each devedy stage and each reach, based on all
samples taken during the study period.

Habitat simulations were obtained for each reachctordance with the PHABSIM protocol
adapted to French streams (Ginot et al. 1998; 8Sabeaitt al. 1995). Weighted usable area
(WUA, in m?) was used to represent habitat avditgbfor the three development stages
(Souchon et al. 1989). The ratio between the maxinadgult biomass sampled during the
study period and the WUA for adults at instreamvflalue (minimum available habitat) was
used to represent the local carrying capacity ef tbach. In addition, spawning habitat
availability was calculated almost every year feaahes located in the Fontan, Breil and Rory
bypassed sections; this corresponds to the ratiwele® the area of streambed displaying
grain sizes between 0.2 and 5 cm in diameter, den=il to be favorable to trout spawning
(Bagliniere & Maisse 1991; Kondolf & Wolman 1993)nd the entire wetted area of the
reach.

Daily discharge and temperature time series wetertiéned from recorders deployed within
each monitored bypassed section. When discharge tevaporarily unavailable, it was
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extrapolated using natural daily discharge timéseand/or operative data provided by power
plants. Missing water temperature values were egéichusing extrapolation models from air
temperature (Bret et al.).

Habitat simulations associated to daily dischaigestseries determined daily WUA time
series for the three development stages for eamthrelhis dynamic approach is considered
the most appropriate for studying habitat limitatim population dynamics (Capra et al.
1995). It was used in MODYPOP to evaluate locahysag capacity by monthly steps for
each development stage.

The date and magnitude of each power plant operatient (overtopping, flushing or plant
shutdown) that occurred during the study period ewdetermined. Water quality was
measured on each reach at the beginning of the/,sautl then regularly recorded only in
reaches at risk of poor water quality accordinthefirst analysis.

RESULTS

Population structure and carrying capacity

Strong temporal fluctuations in trout density werieserved in all study reaches (Table
16320). Mean densities and standard deviations higheer for 0+ than for 1+ or >1+. Mean

coefficients of variation for reach developmenigstalensities were 0.98 for 0+, 0.78 for 1+
and 0.58 for >1+.

The population structures were quite similar toheather, except for the Breil reaches.
Comparison of the two trout populations in the R&reer (separated by ~10 km) revealed
differences in biological characteristics. Growthsahigher downstream in Breil (26-32 mm
in the third year) than upstream in Fontan (21-24 at the third year); trout survived longer
downstream (5 years) than upstream (4 years); gaatafirst maturity in females was greater
downstream (3 years old) than upstream (2 yeajs old

The carrying capacity of each development stagguated between reaches within a given
bypassed section and between years in a given,rdapkending on discharge. Limitation due
to carrying capacity was never observed in anylreaat any time during the study period.

Additional reach-specific drivers
The seven additional drivers identified are preseém Bold italic: non-significant test
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Table 4. For the three bypassed sections repraesbptevo or three reaches, the same drivers
were involved for all reaches, and tuned paraméteostality rates, and flood thresholds and
durations) showed the same values.

Four drivers concerned hydrology. Two types of lnalyical event induced mortality: (1)
floods during spawning (for the Beyrede bypassetiag represented by three reaches) or in
Spring (for all reaches) induced mortality in Oeut, and (2) exceptional floods induced
mortality in all development stages (for two bypksections represented by five reaches:
Beyrede and Fontan). Flood thresholds and minimwmatebns inducing 0+ mortality are
presented in Table 5. Mortality rates could diffgeatly depending on the intensity of the
event (between 20% and 90%).

In contrast, two hydrological events induced pusiteffects on mortality: (1) overtopping
was associated with better 1+ survival (when flagdéxceeded 10 fis*during Spring) and
>1+ survival (whatever the flood value or time efy) in the LIG2 reach, and (2) no floods
during Spring was associated with better 1+ suhiivéhe ROIP2 reach. These survival rates
depended of the number of individuals in the lodevelopment stage the year before.

In addition to hydrology, three other abiotic divewere identified. Limited available
spawning area induced mortality during intra-grakfel in the LIG2 reach. This occurred
almost every year, except in 2000 and 2001 wheh tagpds increased spawning ground. In
the two reaches of the Breil bypassed sectionetbih@rt-term poor water-quality events were
observed during warm Summers, due to under-sizingge upstream wastewater treatment
plant, and induced mortality in O+ trout. Finalfygwer plant operations induced 0+ and 1+
mortality in the three reaches of the Beyréde bypdsection (three times during the twenty
years of monitoring). The intensities of these elsvdiffered: power plant operation seemed
to induce less mortality (50% to 75%) in the Bemy@édaches than poor water-quality in the

Breil reaches (75%) or limited spawning area inRloey reach (80%).

Final complete models

Model calibration results for each reach understdhe influence of local phenomena on
trout population structure. Observed and simulatedsity fluctuations for all development
stages in the BEY2 reach are presented Fig. utstrihte these results. Results for all reaches
are proposed as supplementary materials. A systbéthe temporal and spatial incidence of
each identified driver is shown in Fig. 3. For theee bypassed sections represented by more
than one reach, all identified drivers operatedllaeaches of the section. Most of the drivers

8
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were observed in any given bypassed section. Tesmhpocurrence was somewhat dependent
on study period duration, and was more variablen tepatial occurrence: between 0.08
times.yeat for exceptional flooding and every year for ovefiing in the Rory bypassed
section, and for biotic processes (those includethé initial model: survival, fecundity and
growth rate, potential carrying capacity and foedi@ability).

Model validation

Validation test results are presented in Table 0632

First, validation tests were performed on reach esaith only biotic drivers (without the
seven additional abiotic ones). Results revealatidhly 15% of reach models were validated
for the direction of the density fluctuations betwey/ears and for the density value.

Second, validation tests were performed on finatels integrating all drivers (biotic and
additional abiotic ones). Additional drivers grgatinproved the number of validated reach
models: 63% for density fluctuation direction ar@ for density value. All models for the
BREIL1 reach showed poor results. Models for O+emealidated for all other reaches, except
for direction in the ROIP2 reach (p-value=0.06edctions for this development stage were
then successful in seven of the nine reaches. ddiath for other development stages were
less satisfactory (5/9 for 1+ and 6/9 for >1+). Tiwst development stage was better
simulated than the older ones.

DISCUSSION

The present study revealed that biotic driverscstined all reaches. In addition, seven other
drivers were identified, four of which concerneddhylogy. All drivers operated at bypassed
section rather than reach scale.

Biotic processes

The biotic processes originally included in the mlogurvival, fecundity and growth rates,
carrying capacity and food availability) structuraldl reaches. They were necessary but not
sufficient to validate reach models in most cagesuraud (1999) demonstrated their
importance in population dynamics modeling (forrepée, a density-dependent effect on 0+
could decrease mortality rate 4-fold in this depet@nt stage). Carrying capacity (Ayllon et
al. 2012) and density-dependent mortality (Nicdlale2008; Ojanguren et al. 2001) are two
drivers widely documented as structuring trout datens. In the present study, these

processes contributed to achieving validated modleiss confirming that they need to be
9
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integrated in population dynamics models. However, limitation was seen reacted to
carrying capacity for adults, in terms of habitedigability as measured by WUA, during the
study period. Other habitat components, such dteslaailability, may, however, influence
trout dynamics (Dieterman & Hoxmeier 2011).

Additional drivers
Among additional drivers, hydrology mainly explaiheemporal fluctuations in trout density,
regardless of reach. It operated throughout thet tif@-cycle, depending on flood intensity.
An effect of flooding during Spring (for all read)eor spawning (for Beyréde reaches only)
on recruitment was observed regularly during tlieysperiod (0.48 times.yeaon average).
Hydrological events during spawning show positivano effect (Hayes 1995; Lobdn-Cervia
1996; Unfer et al. 2011) more often than negatimpact (Nelson 1986) on trout density.
These differences may be explained by the timinwéen the hydrological event and trout
spawning in the study river: a reasonable floochéyest before spawning may improve the
potential spawning ground (Poff et al. 1997; Urdeal. 2011), while high flooding after eggs
have been laid could induce redd scouring and egygatity (Montgomery 1996). In contrast,
the negative effect of high flow during intra-gr&and post-emergence life on recruitment
has been widely reported in mountain streams (G&ttat al. 2002; Jensen & Johnsen 1999;
Lobon-Cervia 2004). However, comparison of foufetént geographical contexts revealed
that the threshold value as of which mortality aced in the first development stage differed
between bypassed sections. The Breil populatiothén Roya River seemed to have the
highest threshold compared to its low flow magnguthreshold=4.9*Q90). This river is
subject to a strong hydrological regime, with reguwccurrence of intense floods. The Brell
trout population, which had faster growth, may besslsensitive to floods than the Fontan
population in the same river or other studied pafms (Klemetsen et al. 2003).
Furthermore, the present large dataset (in termstuafy period and number of monitored
reaches) allowed observation of mortality inducgdelzceptional floods on two bypassed
sections (Fontan and Beyrede) whenever the eventri@d. This driver was also observed in
some other studies (Jowett & Richardson 1989; Yaatred. 2010).
Usually, hydrology induced negative effects on raldyt, but in the present study it was also
associated with a positive impact in the Rory andtfHaut reaches, playing a determining
role in maintaining population viability. For theoR/ reach, better 1+ and >1+ survival was
likely induced by downstream migration when oveping occurred (Gouraud et al. 2008).
10
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Adult densities were not correctly simulated foistheach (non-significant validation tests:
57% of simulated densities higher than observedegl This driver may be less structuring
for adults than for 1+ trout, and dedicated momprwill be required to study adult
migration on this reach. Juvenile and adult migrativere previously observed in other
streams, occurring regularly over the years, depgnan different drivers (Cucherousset et
al. 2006; Frank et al. 2012; Vgllestad et al. 20ki2ontrast, populations with little mobility
were also reported (Dieterman & Hoxmeier 2011). phesent study revealed an influence of
migration on population dynamics only in the Rogach. This process need greater attention
and specific monitoring to be precisely modeled. fh@ Pont-Haut reach, better 1+ survival
was regularly observed (every 0.57 years), duebseace of flooding during Spring. Some
authors reported different effects of hydrology @n trout depending on the timing of the
event (Hayes et al. 2010; Unfer et al. 2011). Hewvethe influence of this driver on 1+ is not
clearly known. Drivers structuring older developmetages than 0+ are more difficult to
detect (Cattanéo et al. 2002).

Furthermore, three other local drivers, independadntiydrology, were revealed: (1) poor
water quality in the two Breil reaches during weBormmers, (2) limited spawning area in the
Rory reach due to reduced sediment transport, nan(impact of power plant operations in
the three Beyrede reaches. These drivers all attiedst on recruitment, with different levels
of influence and frequencies. Limited spawning dgareduced sediment transport in the
Rory reach appeared to be a major structuring droeeurring every 0.89 years. In contrast,
poor water quality in the Breil reaches and powenpoperations in the Beyréde reaches
were rarer, and will require long-term local monitg. Drivers limiting trout biology (water
guality or spawning area availability) were onlysebved in one specific bypassed section,
but it could reasonably be supposed that the effaght occur in any bypassed section
affected by the same limitation.

Finally, when two or three reaches of the same &sg section were modeled, no drivers
were identified for only one of them: i.e., all drs acted at bypassed section scale. This
result is consistent with the spatial scale ofuiefice of the identified drivers (Jackson et al.
2001).

Synthesis
We propose to synthesize these results by chamntethe drivers identified in the study:

11
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(1) general drivers, observed on more than two bypassstions: biotic processes
(survival, fecundity and growth rates, potentiatrgmg capacity, food availability),
flooding during Spring or spawning and exceptidfeaids;

(2) specific drivers: downstream migration allowed byemopping, limited spawning
area, no flooding during Spring, poor water quabtyd power plant operation.

Complete models were validated: they accuratelhukitad density and temporal fluctuations
of each development stage in most reaches. The M@IPYmodel thus appeared well suited
to simulate trout populations in different geognaph contexts. However, 0+ simulations
showed better significance than older stages. Rewnt density was much more variable
than 1+ or >1+ density. This low range of variatexplained the lower results of the Monte-
Carlo validation tests for older stages. It wadidlift to identify specific drivers structuring
1+ or >1+ trout in these conditions. Most driveffeeted recruitment. Monitoring will need
to be maintained to detect drivers for older stageshe chances of detecting environmental
influences on the population increase with the tleraf the time series (Vorosmarty et al.
2010), even if older stages were rarely reportduketstructured by abiotic drivers (Cattanéo et
al. 2002). Moreover, the studied trout populatiamese located in bypassed sections. We also
monitored reference reaches and applied this apprta several of them (Gouraud et al.
2004). Results on these reaches were consisteamtivatdrivers presented in this paper, but it
was decided not to include them because they weararf comparison with reaches located in
bypassed sections. Further studies need to be cmwlan streams with unregulated flow, to
confirm main the drivers of trout population in kars hydrological contexts.

Conclusion

The present study used long-term extensive bioddgémd physical monitoring to build

population dynamics models with reach-specificlralion and validation procedures. This
required long and heavy investment, preventing widealysis. Thus, this reach-based
approach is probably not suited to drawing genawatlusions (Armstrong & Nislow 2012).

Our comparative approach revealed drivers operatirdjfferent temporal and spatial levels.
Additional analyses need to be conducted for easterdon larger data-sets, to regionalize
and quantify their effects exactly. For examples thfluence of hydrological events during
Spring on recruitment may be related to hydrauinditions (e.g., flow velocity) rather than

of the mean daily flow value. This approach migkveal a global influence of hydraulic

conditions, rather than a site-specific influendehgdrology. Fitting the model through a

12
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statistical method would remove the time-consunualijpration procedures and also allow
the combined influence of drivers to be investigatdowever, this would need more data, or
else fewer parameters.

Research perspectives comprise developing a moigalgtool that can integrate temporal
variability and controlling drivers for each poptida. Such a tool is essential to implement
efficient large-scale management measures (ColReesira & Cowx 2004; Jackson et al.
2001). Thus, although long-term monitoring and loeamalyses will remain crucial,
assessment of trout population status would beldieth
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564 TABLES

565 Table 1. Physical characteristics of the five byggdssections. The annual mean flows (AMF)
566 are those of the natural part of the river upstredrthe dam in the bypassed section. Low
567 flow magnitude (Q90) was defined as daily dischaageeeded 90% of the time during the
568 study period.

Bypassed River Reach AMF Q90 Instream flow Altitude Slope
section (m3s?) (mi.s?) (m3.s?) (m) (%)
Beyrede Neste BEY1, BEYZ2, 20.0 10.5 1.50 688 0.7
d’Aure BEY3
Fontan Roya FON2, FON3 6.2 5.2 0.62 522 3.6
Breil Roya BREIL1, 11.4 12.2 1.20 280 1.4
BREIL2
Pont-Haut Roizonne ROIP2 2.7 2.5 0.28 740 3.7
Rory Lignon du LIG2 2.9 2.2 0.35 560 24
Forez
569
570

18



571

572
573

Main drivers of trout population dynamics

Table 2. Physical characteristics of monitored meacand bypassed sections.

Bypassed Reach Nb of Dist. water Length Mean Dominant
section samplings intake (m) (m) width (m) mesohabitat
Beyréde BEY1 14 500 158 12.6 Riffle (51%)
BEY2 19 2500 149 14.8 Run (43%)
BEY3 15 3800 195 11.1Riffle (57%)
Fontan FON2 13 1250 106 12.1 Rapid (54%)
FON3 9 1700 61 10.3Run (62%)
Breil BREIL1 500 124 11.2 Run (65%)
BREIL2 2800 78 11.8 Pool (65%)
Pont Haut ROIP2 16 700 101 7.0 Rapid (70%)
Rory LIG2 15 1200 148 8.8 Riffle (45%)
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574 Table 3. Global statistics on density (mean andds&ied deviation) and results of validation

575 tests of reach models.

Observations Validation tests without Validation tests of
(ind.100m%) abiotic drivers complete models

Reach Stage -value p-value p-value p-value
Mean  SD drr)ection density direction density
BEY1 0+ 123 74 0.40 0.62 0.02 0.00
1+ 88 59 0.61 0.71 0.10 0.00
>1+ 50 24 0.08 0.50 0.00 0.00
BEY2 0+ 211 15& 0.25 0.75 0.00 0.00
1+ 91 65 0.05 0.30 0.00 0.00
>1+ 44 26 0.43 0.59 0.03 0.01
BEY3 o+ 19€ 16C 0.00 0.21 0.03 0.00
1+ 97 65 0.00 0.03 0.00 0.00
>1+ 54 25 0.59 0.73 0.01 0.04
FON2 0+ 113 93 0.39 0.14 0.01 0.00
1+ 63 51 0.62 0.17 0.07 0.01
>1+ 29 20 0.06 0.02 0.00 0.05
FON3 0+ 181 16¢& 0.14 0.05 0.02 0.01
1+ 84 45 0.14 0.24 0.02 0.05
>1+ 24 11 0.14 0.10 0.00 0.11
BREIL1 0+ 91 11€& 0.09 0.57 0.09 0.42
1+ 36 22 0.51 0.94 0.50 0.85
>1+ 16 10 0.50 0.65 0.19 0.38
BREIL2 o+ 161 138 0.11 0.17 0.02 0.03
1+ 124 87 0.20 0.40 0.04 0.01
>1+ 48 25 0.73 0.82 0.27 0.39
ROIP2 o+ 124 182 0.01 0.07 0.06 0.00
1+ 79 68 0.29 0.00 0.04 0.00
>1+ 55 28 0.04 0.01 0.12 0.00
LIG2 o+ 50 26 0.50 0.41 0.00 0.00
1+ 37 17 0.16 0.16 0.06 0.00
>1+ 44 12 0.49 0.72 0.52 0.30
Nb of validated reach models 4 4 17 19
% of validated reach models 15 15 63 70

576 Bold italic: non-significant test
577
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Table 4. Seven additional drivers identified in gtedy reaches. Negative values of mortality
rates correspond to better survivals. Temporal wenge (N bobs/Nb years) of each driver

was calculated on the study period on the readlypassed section where it was involved.

Driver Mortality Stage Reach Nb obs/
rate Nb years
Flood during spring/spawnind.20-0.75 0+ All 43/90=0.48
Exceptional flood 0.75-0.90 All BEY1, BEY2, BEYS3, 3/39=0.08
FON2
Overtopping -0.6 1+ LIG2 14/18=0.78
-0.2 >1+ LIG2 18/18=1.00
No flood during spring -0.3 1+ ROIP2 13/23=0.57
Limited spawning area 0.80 0+ LIG2 16/18=0.89
Poor water quality 0.75 0+ BREIL1, BREIL2 3/1030.
Power plant operation 0.50-0.7%+, 1+ BEY1, BEY2, BEY3 2/20=0.10
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Table 5. Flood-threshold and number of days forcWwhlow had to exceed threshold to

induce mortality in 0+ trout for each bypassedisact

Bypassed Period Q threshold Q Threshold /Q90 Nb days Mortality
section (m3.s?) rate
Beyréde March-June 35 3.3 9 75%
March-June 35 3.3 4108 20%
Nov-Dec 60 5.7 1 75%
Whenever 94 8.9 1 75%
Fontan March-June 8 1.6 1 75%
Whenever 71 13.6 2 90%
Breil March-June 60 4.9 1 75%
Pont-Haut March-June 9 3.5 1 75%
Rory March-June 5.5 2.5 1 75%
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588 FIGURES

589 Fig. 1. Location of the five bypassed sections.
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592 Fig. 2. Observed (white squares) and simulatede(bitcles) density fluctuations for (a) 0+,
593 (b) 1+ and (c) >1+ trout in the BEY2 reach. Resltis all reaches are proposed as
594  supplementary materials.
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596 Fig. 3. Characterization of temporal and spatiausences of each driver structuring trout
597 population dynamics. Temporal occurrence was the frequency of the driver during the

598 study period on the reach or bypassed section wihesas involved, or the mean time

599 frequency when several bypassed sections werevievolThe direction of the fluctuation and

600 the affected development stage are indicated irtkbta. *Biotic processes were those
601 included in the initial model: survival, fecundiéymd growth rates, carrying capacity and food
602 avalilability.
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