
HAL Id: hal-01857446
https://edf.hal.science/hal-01857446

Submitted on 16 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EVALUATION OF STATIC ANALYSIS TOOLS USED
TO ASSESS SOFTWARE IMPORTANT TO

NUCLEAR POWER PLANT SAFETY
Alain Ourghanlian

To cite this version:
Alain Ourghanlian. EVALUATION OF STATIC ANALYSIS TOOLS USED TO ASSESS SOFT-
WARE IMPORTANT TO NUCLEAR POWER PLANT SAFETY. Nuclear Engineering and Tech-
nology, 2015, Special Issue on ISOFIC/ISSNP2014, 47 (2), pp.212-218. �10.1016/j.net.2014.12.009�.
�hal-01857446�

https://edf.hal.science/hal-01857446
https://hal.archives-ouvertes.fr

ww.sciencedirect.com

Nu c l E n g T e c h n o l 4 7 (2 0 1 5) 2 1 2e2 1 8
Available online at w
ScienceDirect

journal homepage: ht tp: / /www.journals .e lsevier .com/nuclear-
engineer ing-and-technology/
Technical Note

EVALUATION OF STATIC ANALYSIS TOOLS USED TO ASSESS
SOFTWARE IMPORTANT TO NUCLEAR POWER PLANT SAFETY
ALAIN OURGHANLIAN*

EDF Lab CHATOU, Simulation and Information Technologies for Power Generation Systems Department, EDF R&D, 6 quai Watier, BP 49,

78401 Chatou Cedex, France
a r t i c l e i n f o

Article history:

Received 8 October 2014

Received in revised form

2 December 2014

Accepted 4 December 2014

Available online 21 January 2015

Keywords:

Abstract Interpretation

Software V&V

Source Code Semantic Analysis
* Corresponding author.
E-mail address: alain-1.ourghanlian@edf.

This is an Open Access article distribute
creativecommons.org/licenses/by-nc/3.0) wh
dium, provided the original work is properly
http://dx.doi.org/10.1016/j.net.2014.12.009
1738-5733/Copyright © 2015, Published by El
Special Issue on ISOFIC/ISSNP2014.
a b s t r a c t

We describe a comparative analysis of different tools used to assess safety-critical software

used in nuclear power plants. To enhance the credibility of safety assessments and to

optimize safety justification costs, Electricit�e de France (EDF) investigates the use of

methods and tools for source code semantic analysis, to obtain indisputable evidence and

help assessors focus on the most critical issues. EDF has been using the PolySpace tool for

more than 10 years. Currently, new industrial tools based on the same formal approach,

Abstract Interpretation, are available. Practical experimentation with these new tools

shows that the precision obtained on one of our shutdown systems software packages is

substantially improved. In the first part of this article, we present the analysis principles of

the tools used in our experimentation. In the second part, we present the main charac-

teristics of protection-system software, and why these characteristics are well adapted for

the new analysis tools. In the last part, we present an overview of the results and the

limitations of the tools.

Copyright © 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.
1. Introduction

In 1999, the French Nuclear Safety Authority published a

Fundamental Safety Rule (RFS: R�egle Fondamentale de Sûret�e)

applicable to safety systems' software. This document defines

the principles and requirements to be satisfied by the design,

implementation, installation, and operation of safety-critical

software. The French regulatory practice requires that

appropriate provisions be made to guarantee safe shutdown

of the reactor, long-term cooling of the fuel, and confinement
fr.

d under the terms of the
ich permits unrestricted
cited.

sevier Korea LLC on beha
of radioactive products, under all realistic operating condi-

tions. For some requirements, the RFS proposes acceptable

practices.

One of these requirements is: “An analysis shall be per-

formed regarding the potential failures of a computer-based

system caused by a software fault and their consequences to

safety. The objective of this analysis is to verify that system

failures caused by software faults have no consequence to

safety”. One of the measures of the associated acceptable

practice consists of “identifying the various types of software
Creative Commons Attribution Non-Commercial License (http://
non-commercial use, distribution, and reproduction in any me-

lf of Korean Nuclear Society.

mailto:alain-1.ourghanlian@edf.fr
http://creativecommons.org/licenses/by-nc/3.0
http://creativecommons.org/licenses/by-nc/3.0
www.sciencedirect.com/science/journal/17385733
http://www.journals.elsevier.com/nuclear-engineering-and-technology/
http://www.journals.elsevier.com/nuclear-engineering-and-technology/
http://dx.doi.org/10.1016/j.net.2014.12.009
http://dx.doi.org/10.1016/j.net.2014.12.009
http://dx.doi.org/10.1016/j.net.2014.12.009

Lines ANSI C Code

1 x ¼ 1

2 while (x < 100) {

3 x ¼ x þ 1;

4 }

Lines Range calculation for variable x

1 Xð1Þ ¼ ½1; 1�
2 Xð2Þ ¼ ðXð1Þ∪Xð3ÞÞ∩½�∞; 99�
3 Xð3Þ ¼ Xð2Þ þ ½1; 1�
4 Xð4Þ ¼ ðXð1Þ∪Xð3ÞÞ∩½100;þ∞�

Lines ANCI C Code Range calculation for variable x

1 x ¼ 1 Xð1Þ ¼ ½1; 1�
2 while (x < 100) { Xð2Þ ¼ ½1; 99�
3 x ¼ x þ 1; Xð3Þ ¼ ½2; 100�

Nu c l E n g T e c h n o l 4 7 (2 0 1 5) 2 1 2e2 1 8 213
faults to be considered (data outside allowable ranges, array

overflows, divisions by zero, etc.), regardless of the causes,

and in locating internal threats to the software, in other words

possibilities of occurrence of these types of faults, considering

the defensive programming used”.

The Research and Development Branch of Electricit�e de

France (EDF) investigates the use of methods and tools that

can provide indisputable proof regarding the nonoccurrence

of intrinsic run-time software faults, or that can help asses-

sors to focus on the more complex parts where the tools

cannot work by themselves. One of the investigated ap-

proaches is the semantic analysis of source code.

EDF has been using the PolySpace Verifier [1] tool for > 10

years to perform static analyses of protection system

software [2]. The results of the analyses are sent to the

Safety Authority as are others documents, as part of the

qualification process for safety critical systems. For software

aspects, EDF follows the IEC 60880 standard. The static

analysis complements the verification activities, mainly

based on test activities, done during the software life cycle.

EDF performs static analyses on refurbishment or software

evolution of existing protection systems, and is currently

performing theses analyses on the EPR Flamanville

protection system, Areva NP, La D�efense/France.

Currently, new industrial tools based on the same formal

approach, Abstract Interpretation, are available, such as

Astr�ee [3] and the plug-in Value Analysis of Frama-C [4]. This

article describes a practical experimentation with these three

tools, and shows that the precision obtained on one of our

shutdown systems software packages is substantially

improved, compared with PolySpace Verifier. We are now

able to provide formal evidence that this software, including

application and system parts, is free from intrinsic run-time

faults.

In the first part of this article, we present the tools used

in our experimentation, and Abstract Interpretation, the

underlying approach used by these tools. In the second part,

we present the main characteristics of protection-system

software, and why these characteristics are well adapted for

the new analysis tools. In the last part of this article, we

present an overview of the results and limitations of the

tools.
4 } Xð4Þ ¼ ½100; 100�
2. Technical principles of tools

The semantic analysis of software consists of extracting in-

formation from its source code (e.g., C language) for the

following reasons: (1) to formally prove properties. (Specif-

ically, it ensures that a property is satisfied at the end or

during program execution.) and (2) to exhaustively check

possible intrinsic run-time errors (invalid arithmetic opera-

tions like division by zero, use of null pointers, out-of-bounds

array access or pointers) that could cause failure of the pro-

gram or error propagation throughout the system.

Because we only work with source code, this approach can

only detect intrinsic run-time errors. Functional errors due to

faulty specifications or requirements, or due to specification

misunderstanding, are not detected. For these kinds of errors,

we use testing approaches.
2.1. Analysis principles: abstract interpretation

The semantic analysis tools that we evaluate in this article are

based on the Abstract Interpretation technique, introduced in

1977 [5].

This technique is based on the estimation of each variable's
range at all of its occurrences. With this information, it is

possible to formally check some types of run-time errors, such

as zero division, use of null pointers, out-of-bounds array

access or pointers, etc.

In practice, the tool overestimates the ranges by an itera-

tive process. The following example illustrates this approach.

For the variable x, X(i) denotes its range at the end of line

number i.
The first calculation gives the equations to solve:
The tool resolves these equations by an iterative process.

At the beginning all the ranges are empty. At the end the tool

converges to the following result:
In this example, the tool formally proves that there is no

risk of overflow for the integer variable x. To increase the

precision of the analysis, an analyzer may adopt a much finer

modeling method than simple intervals (e.g., lists of intervals,

singular points, octagons, polyhedra, etc.).

Often, program variables are interdependent. In that case,

for each line of code, the analyzermay represent the ranges of

the variables by an n-dimensional geometrical shape; n being

the number of variables visible at this line, similar to an

octagonal or polyhedral abstract domain. With octagonal do-

mains, for code containing two interdependent variables, the

tool computes additional overestimates for x-y and xþy. For a

polyhedral abstract domain, the tool computes overestimates

of a.xþb.y, where a and b are constants chosen by the tool.

To illustrate this point consider the following example:

http://dx.doi.org/10.1016/j.net.2014.12.009
http://dx.doi.org/10.1016/j.net.2014.12.009

Table 1 e Correspondence of error type.

Frama-C PolySpace

This code is dead UNR

Division by zero ZDV

Accessing out of bounds index OBAI

Out of bounds write or read IDP

Accessing uninitialized left-value NIV/NIP

Overflow in float or integer (signed/unsigned) OVFL

Non terminating function NTC/NTL

Invalid RHS operand for shift SHF

Nu c l E n g T e c h n o l 4 7 (2 0 1 5) 2 1 2e2 1 8214
1 volatile int random;

2 void octagon(void) {

3 int x,y;

4 float result;

5 if (random) {

6 x ¼ 5;

7 y ¼ 2; //polyhedral domain:x2f5g; y2f2g; x� y2f3g
} else {

8 x ¼ �2;

9 y ¼ �5; //polyhedral domain: x2f�2g; y2f�5g;
x� y2f3g

10 }

11 result ¼ 1/(x-y); // x2½�2; 5�; y2½�5;2�; x� y2f3g

Without octagonal or polyhedral domains, the tool com-

putes the following interval overestimate at line 11:

x2½�2;þ5�; y2½�5;þ2�
In that case in line 11, the tool estimates that:

�4 � x� y � 10

and raises a warning that the division potentially has a null

denominator. By using octagonal domains, the tools merge

the previous sets of x-y, thereby maintaining more precision

for the value of x-y.

It is important to notice that this approach, by over-

estimating the variables ranges, can raise run-time errors that

are not achievable by real program execution. We call this a

false alarm. For instance, without using polyhedral domains,

tools can raise one false division by zero alarm at line 11 of the

previous example.

We can already note the following:

� The global variables (which are visible in every line of code)

systematically increase the dimensions of the geometrical

shapes, and increase the tool's analysis time.

� The tool's approximations lead to a loss of precision: A

diagnosis is “certain” either when all the elements of the

geometrical shape lead to an error or when they all lead to

an absence of error. However, a diagnosis is “uncertain”

when only a part of the geometrical shape leads to an

error.

2.2. Results given by the PolySpace tool

After control flow analysis and abstract interpretation calcu-

lations, PolySpace Verifier gives the following results: (UNR)

unreachable code or function; (ZDV) division by zero; (OBAI)

out-of-bound array access or reference through incorrect

pointer (IDP); use of noninitialized variable (NIV) or pointer

(NIP); (OVFL) overflow/underflow of floating point or integer

variable; (NTC) nonterminating function call; (NTL) nonter-

minating loop; and (SHF) shift operator check.

These checks are shown in the program's source with the

following color code: red for guaranteed error; green for

guaranteed absence of error; orange for “uncertain” diag-

nostic; and gray for unreachable code.

In addition to the checks, the user can examine the ab-

stract domain calculated by the tool. Although the tool uses
different types of abstract domains, the results are displayed

as intervals. This information is important for the user. It al-

lows him or her to understand the origin of orange di-

agnostics, which are often due to overapproximations of

variables' ranges by the tool.
2.3. Results given by the Frama-C tool

Frama-C is a modular static analysis framework for the C

language. Within this framework, a number of plug-ins offer

different kinds of static analysis. For our experimentation, we

mainly use the plug-in value that uses Abstract Interpretation

to compute sets of possible variable values for analyzed

software.

Prior to analysis, the tool performs a number of local

transformations in the normalization phase. These trans-

formations aim at making further work easier for the ana-

lyzers. Analyses usually take place on the normalized version

of the source code. Normalization results in a program that is

semantically equivalent to the original one but that uses fewer

instruction types (e.g., all loops are transformed into while

loops).

The results given by Frama-C are written directly in the

simplified source code as assertions generated by the

analyzer, but only potential or proven errors are given (red and

orange results from the PolySpace tool). The unreachable code

is highlighted in orange. In comparison with the PolySpace

tool, Frama-C does not explicitly signal green diagnostics.

The error types covered by Frama-C (and described in Table

1) are similar to those of PolySpace.

In addition, Frama-C generates an assertion for pointer

comparison. This assertion warns that in the C language, the

comparison of variable addresses may vary from one compi-

lation to another, such as &a < &b or &x < 0x600,000. We will

detail this point later.

As with PolySpace, the user can examine the sets of values

for each variable at each point of the analyzed software. These

sets are discrete values or intervals. However, unlike Poly-

Space, Frama-C does not use sophisticated abstract domains

such as polyhedra.

In the objective of proving the absence of error, the user

has to add specific assertions to help the analyzer to prove

generated assertions, or the user has to argue that these

generated assertions are due to the analyzer's over-

approximation. For this purpose, we used the plug-in scope to

compute information about dependencies on specific vari-

ables selected by the user (e.g., statements that contribute to

http://dx.doi.org/10.1016/j.net.2014.12.009
http://dx.doi.org/10.1016/j.net.2014.12.009

Nu c l E n g T e c h n o l 4 7 (2 0 1 5) 2 1 2e2 1 8 215
the values of a variable at a program point selected by the

user).
3. Presentation of the case study

3.1. System architecture

For our experimentation, we analyzed a prerelease version of

the software of a refurbished nuclear power plant (NPP)

shutdown system. This system is computer based and is one

of themost critical systems in an NPP. These systemsmust be

simple in order to obtain a high level of confidence.

Rolls Royce Civil Nuclear developed the Instrumentation &

Control (I&C) system and Operating System (OS) software, and

AREVA NP will develop the application software.

The software has no interruptions and is a sequential

infinite loop composed of the following steps: (1) self-moni-

toring; (2) cycle time management; (3) data acquisition; (4)

application processing; (5) data output; and (6) local terminal

management.

The system is composed of three types of electronic board.

(1) One digital processing module: This card runs the OS and

the application software. (2) Different kinds of signal input/

outputmodules: These cards are connected to digital or analog

sensors or actuators, and they do not contain embedded soft-

ware. (3) Communication module: This card has specific

embedded system software. Depending of the system's global

architecture, several communication modules can be plugged

into one processing module. The interface between OS and

communication modules is done by dual port RAM.

Depending on the function being implemented in the sys-

tem, the designer selects the relevant signal input/output

boards, and the necessary number of communication

modules.

The application's C code is automatically generated from

graphical diagrams. The OS is directly programmed in ANSI C.

For our experimentation, as it was a prerelease of the OS,

we did not have the final application software. Instead, we

used the system supplier's application software developed to

test the system.

The interface between the generic OS software, commu-

nication software, and specific application software is done by

global variables initialized by C code and assembly code. To

increase the analysis' precision, we stubbed these assembly

files.

3.2. Why safety critical software is well adapted to static
analysis

For the NPP, the main design rule for safety critical software is

simplicity. In our example, the software is sequential, has no

multitasking, nor interrupt processing.

The compiler's behavior and the options used are well

known. The full source code of the software to be analyzed is

available, and is relatively small. For our case study, the size of

the system software is approximately 17,000 lines of C code

(loc), and 22,000 loc for the application software. The memory

mapping is known; this point is important andwill be detailed

in the Results section.
The software, especially system software, is close to

hardware and generic (i.e., has to manage all possible hard-

ware input/output configurations). The main difficulties for

the software are the following: (1) it uses pointers to absolute

addresses; (2) it manages pointers as integers by casting.; and

(3) self-tests are divided into several slices over several

sequential loops. At each loop, the lastmemory address tested

is stored in a global variable. So, the domain value of these

variables consumes computer resources, or introduces

imprecision by overapproximation.

The system/application interface has to be generic, and

uses large, structured global variables that could be a source of

inaccuracy.
4. Analysis of the shutdown system

4.1. Analysis preparation

All the evaluated tools analyze C source code. Parts of the

source code are in assembler. We analyzed each of them and

wrote stub functions or initialization for some of them to in-

crease the analysis' accuracy.
For example, the system's network configuration is defined

in an assembler file. This file declares and defines global var-

iables used in the C code.

During analysis, we also modified some parts of the C code

to increase the analysis' scope. For example, the system soft-

warewaits ina loop forvalue changes inahardware register, or

reads values from communication registers. In these cases,we

had to model this access as reading a “volatile” C variable.

4.2. Analysis optimization

The tools Astr�ee and Frama-C propose analysis options to

customize analysis. These options require a good under-

standing of how the tool works, but they significantly increase

the analysis accuracy.

In particular, the static analysis of loop instructions, ar-

rays, or structured variables is often a source of

overapproximation.

4.3. Loop unrolling

For Frama-C, the option “slevel n” indicates that the analyzer

is allowed to separate, at each point of the analyzed code, up

to n states from different execution paths before starting to

compute the union of said states. An effect of this option is

that the states corresponding to the first n iterations in the

loop remain separated, as if the loop had been unrolled. This

option also improves analysis accuracy of code containing

multiple paths, as illustrated in the following C code:

1 void multiple_path(int *fct_ok, int *status) {

2 int var_loc;

3 int fct_oki ¼ 1;

4

5 if (random)

6 var_loc ¼ 12;

7 else

http://dx.doi.org/10.1016/j.net.2014.12.009
http://dx.doi.org/10.1016/j.net.2014.12.009

Nu c l E n g T e c h n o l 4 7 (2 0 1 5) 2 1 2e2 1 8216
8 fct_oki ¼ 0;

9 if (fct_oki ¼¼ 1)

10 var_loc þ ¼ 12; //non initialization assertion generated

11 if (fct_oki ¼¼ 1)

12 *status ¼ var_loc;

13 *fct_ok ¼ fct_oki;

14 return;

15 }

As long as the “slevel” is < 3, the tool generates a non-

initialization assertion in line 10, when reading var_loc.

Indeed, if the tool cannot separate more than one state, the

output of the first if instruction (line 9) will merge the different

intermediate states, and lose the relation between variables:

fct oki ¼ 10var loc ¼ 12

Thus, the tool stores only the state:

fct oki2f0; 1gandðvar loc ¼ 12 or non_initializedÞ
We mainly use this option to improve analysis precision.

The option can be global or adapted to the scope of a C

function.

This unrolling loop option can also be found in the Astr�ee

tool.
4.4. Controlling abstract domain precision

As introduced in the “Results given by the Frama-C tool”

section, the abstract domains used by Frama-C are either sets

of discrete values or intervals. An option manages the

threshold at which a set of discrete values is approximated by

an interval. This option could reduce the number of false as-

sertions but needs more computer resources.

Another option is used to indicate the number of array cells

that the tool can distinguish. Above the user-set limit, all the

cells' abstract domains are merged, causing approximation.

This option was useful for our case study, as the source code

uses large arrays for system configuration purposes.
4.5. User assertions

Another way to improve precision or prove formally the

absence of error is to use user assertions. All the tools evalu-

ated have this function.

During analysis, the tool evaluates the truth value of the

user assertion. If it cannot prove the assertion, an alarm is

raised and the tool continues along the analysis path consid-

ering the assertion to be true.

We use user assertions as hypotheses concerning the

environment of the software, but also to indirectly prove as-

sertions generated by the tool.

To illustrate the first use of user assertions, the analyzed

case study has a serial link to a terminal. From this link, we

can send data to the critical system. The system software

reads from a 16-bits hardware register (given by absolute

address) the number of bytes of received messages. However,

messages sent by the terminal are limited to 256 bytes, so we

added a user assertion to avoid generation of “out-of-bound”

assertions by the tool.
The other use of assertions as ameans of indirect evidence

is as follows. Frama-C is currently limited in interprocedural

analysis. The following example illustrates this limitation.

volatile int random;

void test_chemin(int * fonction_ok, int * retour) {
int var_loc;

int fonction_oki ¼ 1;

if (random)

var_loc ¼ 12;

else

fonction_oki ¼ 0;

if (fonction_oki ¼¼ 1) var_loc þ¼ 12;

if (fonction_oki ¼ ¼ 1) *retour ¼ var_loc;

*fonction_ok ¼ fonction_oki;

/* Assertion proved by Frama-C */

//@ assert *fonction_ok ¼ ¼ 1 ¼ ¼>/initialized(retour);
return;

}

void main () {

int my_fonction_ok;

int my_retour;

test_chemin(&my_fonction_ok, &my_retour);

if (my_fonction_ok ¼¼ 1)
// useofnoninitializedvariable generatedbyFrama-C

my_retourþþ;
}

In the example, Frama-C proves the user assertion at the

end of the function. But at return to the caller main function,

the Frama-C states are merged, and the dependency infor-

mation between fonction_ok and initialization of variable

my_retour is lost.

For this point, the PolySpace tool better manages this

dependence, because it colored in green the use of the my_r-

etour variable.
5. Results

We used the same case study, with the same code trans-

formation just described, with three static analysis tools:

PolySpace Verifier, Frama-C, and Astr�ee. For Astr�ee tool, the

evaluation was done in the short 30-day free trial period.

The versions used are as follows: PolySpace R2011a, Frama-

C fluorine 3, and Astr�ee Version 13.04.

The analysis time was about 1 hour on a standard worksta-

tion for the three tools. In the end, we noted the number of po-

tential errors that have to be checked by the user. These are the

number of orange diagnostics for PolySpace, assertions to prove

for Frama-C, and alarms emitted for Astr�ee. PolySpace gave 995

orange diagnostics and eight red diagnostics (concerning

voluntary unsigned overflows), Frama-C generated 153 asser-

tions to prove, andAstr�ee emitted127 alarms. ForAstr�ee,wedid

not generate alarms for noninitialized variables because the

evaluated version had a known “bug”which gave too imprecise

results. Thus, an accurate tool will raise fewer potential false

errors, as illustrated in Chapter “Analysis principles: abstract

interpretation”. The Abstract Interpretation theory guaranties

that no real faults, of the type checked, are missed by the tool.

http://dx.doi.org/10.1016/j.net.2014.12.009
http://dx.doi.org/10.1016/j.net.2014.12.009

Fig. 1 e Diagnostics distribution.

Nu c l E n g T e c h n o l 4 7 (2 0 1 5) 2 1 2e2 1 8 217
Fig. 1 compares the diagnostics distribution.

ForPolySpace, theexcessofNIVand IDPchecks ismainlydue

to the fact that the system software uses a lot of pointers to

absolute addresses. For PolySpace, both reading from and

writing to an absolute address leads to warning checks on the

pointerdereference.Anabsoluteaddress is consideredavolatile

variable.An in-depthanalysisof the results shows thataccess to

absolute addresses generated129 IDP checksand77NIVchecks.

Frama-C manages absolute addresses as global variables.

The user has to specify a range of valid addresses. This is

possible with the analyzed software, because we have the

memory mapping of the executable code. With this informa-

tion, we also guarantee that there is no interference between

global C variables and access to absolute addresses.

However, Frama-C cannot consider an absolute address as

a volatile variable. To model access to a hardware register, we

had to modify the source code. Astr�ee goes further in man-

aging absolute addresses: for each address the user can

associate a C type and define if it is a volatile cell or a previ-

ously defined global variable. This information is used to

detect if there is an index overflow when accessing an array

defined by an absolute address, and reduces the generated

alarms by Frama-C when comparing two global variables or a

variable with an absolute address.

The number of diagnostics given by PolySpace and the

limited means to understand where an overapproximation

has been done by the analyzer prevent us from analyzing each

of them.

With Frama-C, we analyzed each assertion to prove. For

each,we could: (1) confirm that it was a real bug; (2) justify that

the tool was not able to conclude; or (3) justify that the tool

made an overapproximation.

For instance, a large number of invalid dereference and

out-of-bounds index assertions are located in modules that
manage communication between the protection system and

the user console. The protection system receives messages

through a serial link. The message cannot exceed 1,024 bytes.

The beginning of the message packet gives its actual size in

bytes, and the two last bytes store the Cyclic Redundancy

Check (CRC) for integrity checking. Upon receipt of a message,

the system checks its integrity by computing the CRC and

comparing the result with that of the message. After this

checking, the software uses the message header to directly

access arrays, without checking if the value being read ex-

ceeds 1,024 bytes. As we modeled the receiving buffer as a

volatile variable, the header was overapproximated.

We did not analyze each of the alarms emitted by Astr�ee,

because the objective was only to position this tool relative to

the other tools.
6. Conclusion and perspectives

During the analysis of the case study software, we highlighted

five bugs and one robustness recommendation to the supplier.

As the software was under development, the supplier

confirmed the bugs. These were found independently by the

supplier in testing phases.

This experimentation with the Frama-C tool allowed us to

justify all the remaining assertions. Up to now, with the Poly-

Space tool, we could achieve this goal only in the application

software. The number of orange diagnostics in the system

softwarewas too high to justify each of them.We are now able

to provide formal evidence that this software, including

application and system parts, is free from intrinsic run-time

faults. Based on this experimentation, EDF has chosen to use

the Frama-C tool to analyze the software of a refurbished

protection system for the 1300 MWe NPP in France.

http://dx.doi.org/10.1016/j.net.2014.12.009
http://dx.doi.org/10.1016/j.net.2014.12.009

Nu c l E n g T e c h n o l 4 7 (2 0 1 5) 2 1 2e2 1 8218
EDF and CEA have an ongoing partnership to improve the

Frama-C tool with regard to identified weaknesses: improved

management of absolute addresses, and improved inter-

procedural analysis.
Conflicts of interest

The author declares no conflicts of interest.
r e f e r e n c e s

[1] MathWorks [Internet]. PolySpace Code Prover, http://www.
mathworks.fr/products/polyspace-code-prover/.
[2] N. Thuy, A. Ourghanlian, Dependability Assessment of safety-
critical system software by static analysis methods, in:
Proceedings of 2003 International Conference on Dependable
Systems and Network (DSN 2003), 22e25 June, 2003. San
Francisco, CA, USA.

[3] AbsInt [Internet]. Astr�ee Run-Time Error Analyzer, http://
www.absint.de/astree.

[4] Frama-C [Internet]. Value plug-in presentation, http://frama-
c.com/value.html.

[5] P. Couzot, R. Couzot, Abstract Interpretation: a unified lattice
model for static analysis of programs by construction or
approximation of fix points, in: Proceedings of the Sixth
Annual ACM SIGPLAN-SIGACT Symposium, 1977.
Los Angeles, CA.

http://www.mathworks.fr/products/polyspace-code-prover/
http://www.mathworks.fr/products/polyspace-code-prover/
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref1
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref1
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref1
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref1
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref1
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref1
http://www.absint.de/astree
http://www.absint.de/astree
http://frama-c.com/value.html
http://frama-c.com/value.html
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref2
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref2
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref2
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref2
http://refhub.elsevier.com/S1738-5733(15)00009-1/sref2
http://dx.doi.org/10.1016/j.net.2014.12.009
http://dx.doi.org/10.1016/j.net.2014.12.009

	Evaluation of static analysis tools used to assess software important to nuclear power plant safety
	1. Introduction
	2. Technical principles of tools
	2.1. Analysis principles: abstract interpretation
	2.2. Results given by the PolySpace tool
	2.3. Results given by the Frama-C tool

	3. Presentation of the case study
	3.1. System architecture
	3.2. Why safety critical software is well adapted to static analysis

	4. Analysis of the shutdown system
	4.1. Analysis preparation
	4.2. Analysis optimization
	4.3. Loop unrolling
	4.4. Controlling abstract domain precision
	4.5. User assertions

	5. Results
	6. Conclusion and perspectives
	Conflicts of interest
	References

